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Constraints are fundamental for data modelling: they keep data integrity and ensure safety. Many
constraint specification languages were developed, e.g., FOL and its fragments, the OCL (Object Con-
straint Language) widely used in the UML/EML software development ecosystem [7], or the diagram-
matic language of lifting constraints [6] popular within the ACT community. These languages are suc-
cessfully employed within their own ecosystems, but create severe interoperability problems when used
in a heterogeneous environment [5]. Unification via XML solves the problem for only simple constraints
and does not help when complex constraints modelling complex requirements appearing in system engi-
neering (SE) are involved. In contrast, the Generalized Sketch Framework (GSF) can manage arbitrary
constraints as soon as they have a specified scope: collection of elements over which the constraint is
declared. This condition does hold for constraint languages used in the SE practice, and specifications in
any of the languages above can be interpreted as generalized sketches (further just sketches).
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The inset figure shows a small example of a data schema
specified as a sketch S. It is a pair pGS,CSq of a graph GS

(with 7 nodes and 7 arrows, arrow hasDr points to the driving
wheels of a vehicle), and a set CS of constraint declarations
(or just constraints) shown as dog-eared notes ((borrowed
from the UML); each constraint has its scope shown with
red dotted lines.1 In detail, a constraint declaration is a pair rcs “ pc,brcsq of a constraint name/symbol
c (e.g., 2,4 or Ď) taken from a predefined signature C , and a binding map brcs: Gc Ñ GS, where Gc

is the arity graph of c (e.g., GĎ consists of two parallel arrows sub and sup, and brĎspsupq “ has,
brĎspsubq “ hasDr). Each constraint name c has its predefined semantics: a class rrcss of data instances
over Gc considered valid, i.e., rrcss is a class of graph morphisms into Gc. E.g., for constraint Ď, instance
t: Gt Ñ GĎ is valid if rrsubsst Ď rrsupsst , where rr¨sst : GĎ Ñ |Span| is the graph morphism into the graph
underlying category Span “ SpanpSetq obtained by inverting mapping t. We say that an instance t: Gt Ñ

GS over GS satisfies a constraint declaration rcs iff pulling t back along brcs results in tæbrcs
P rrcss; then

we write t ( rcs. We will use the term ‘constraint’ for both constraint names and constraint declarations,
which is ambiguous but follows the tradition; the ambiguity can always be resolved by the context.

Semantics of multiplicity constraints (r2,4s etc) can be specified in a similar way by logical means,
but constraint rcwhs is essentially different. It is a very special customized constraint with a complex arity
graph Gcwh isomorphic to its image in GS, and a complex custom semantics. To specify this semantics,
we need to ensure that nodes and arrows in graph Gcwh are interpreted as intended, to wit: we introduce

1Actually each of the 5 attribute arrows has an attached default multiplicity constraint [1] (each vehicle has exactly one
make, year, etc). Moreover, oval nodes are constraints rather than node names, which prescribe these nodes to be interpreted
by predefined sets (of strings, integers etc), Thus, there are 13 constraints in CS, and later we will add five more.
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2 Generalized sketches

constraints type, code, etc, whose arity is a single arrow so that, e.g., arrow named ‘type’ actually denotes
a constraint rtypes declared for an unnamed arrow. (This is exactly similar to oval nodes, whose names
are names of the constraints declared for the underlying unnamed nodes.) This forces the arity graph Gcwh
to be a sketch (a graph with constraint declarations), and a correct binding mapping brcwhs: Gcwh Ñ GS is
to be a sketch morphism and map arrow ‘type’ in Gcwh to arrow ‘type’ in GS, and the same for other four
arrows involved. Thus, constraint cwh depends on constraints type, code, etc to be defined before cwh is
defined. This makes a signature of constraints a category with a hierarchical structure rather than a set.

An instance rr¨sst : Gcwh Ñ |Span| is considered valid, if for each vehicle v P rrVehiclesst , the collection of

its parameters,
´

v.rrtypesst , . . . ,pw.rrcodesstqwPv.rrhassst , . . . ,
¯

satisfies some predefined conditions specified
in a normative document. Moreover, it is not excluded that the final decision whether a vehicle v satisfies
the condition is delegated to an expert e, so that we should write t (e rcwhs to assert t’s validity.

Considering logical satisfaction ( as as a ternary span of functors rather than a binary relation is
the main novelty of the GSF developed in paper [2] (to be presented in the talk). Another new feature
is considering indexed structures rather than subcategories, e.g., in the example above, if G denotes the
category of graphs, and G{C GS is the category of all possible C -labelled binding maps into GS, then con-
straints of sketch S are given by a general functor #S: CS Ñ G{C GS rather than embedding CS ãÑ G{C GS

(our previous treatment was simplified to explain the idea). Similarly, valid instances of a constraint c are
indexed by functor tc

_: Instc
C Ñ G{

∆
Gc, which is not necessarily injective, where G{

∆
Gc refers to a special

slice category whose morphisms are spans of morphisms in G{Gc, which model instance updates/deltas.
Dealing with categories G{

∆
G rather than G{G is another new feature of our sketches compared with [3].

Fig. 1 semi-formally presents the general idea behind the framework. Its nodes denote collections
of objects named in them, and arrows are mappings. Three mappings provides an instance index with
its three basic ingredients: its data schema providing types, its carrier structure (that can typically be
modelled by a typed-graph structure), and (crucially in the context of SE and assurance) a structure of
pieces of evidence supporting the claim that the instance conforms to the schema. Sketchy block arrows
Compatibility 1,2 refer to unspecified interconnections between the components.
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Fig. 1: Conceptual schema of data modelling, M
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Fig. 2: M implemented vis sketches (2 :“ t¨ Ñ ¨u)

A major result [2, Th.2] states that any constraint signature C over a category G with pullbacks
(providing arities for C -constraints) gives rise to a commutative diagram in Cat specified in Fig. 2. In
this diagram, SkepG,C q is the category of all C -sketches, categories G2

∆
and G2

C are global counterparts
of families G{

∆
G and G{C G indexed by G P ObG, and pair pt_,G_q is a fibrations morphism (which

implements Compatibility1 condition while the right-half subdiagram implements Compatibility2).
With a suitable formalization of schema M in Fig. 1(work in progress), the diagram in Fig. 2 would

formally be an instance of M . A version of this idea is realized for the indexed-category-based coun-
terpart of fibrationally-defined M : the notion of an institution with evidence (e-institution) is defined in
[2], which enriches ordinary institutions2 with a structure modelling evidence. The second major result
[2, Th.1] states that any constraint signature C gives rise to an e-institution.

2introduced by Goguen and Burstall [4] to adapt so called abstract model theory [1] to computer science and programming
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