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Model-predictive control (MPC) originated in
process control in chemical engineering [7], and
it has found success in many applications, in-
cluding autonomous driving [4], battery charg-
ing [3], path planning [5], and energy systems [6].
MPC consists of specifying and repeatedly solv-
ing constrained optimization problems. These
problems are designed to model the response of a
controlled system to inputs while satisfying oper-
ating constraints and minimizing a cost function
over a finite prediction horizon. The generality of
MPC gives it several benefits, including the abil-
ity to incorporate constraints on a system’s state
and control inputs, and increased robustness to
sensor noise and/or system perturbations.

Conventionally, control engineers implement
MPC for specific applications in ad-hoc ways
using libraries such as CasADi [1] or CVX
[2], which provide tools for nonlinear optimiza-
tion and algorithmic differentiation, but are not
specifically intended for MPC problems. As a
result, control engineers using such tools must
take their control-theoretic problem statement
and transform it by hand into an optimization
problem that can be solved by a generic solver.

There is reason to think that this approach
can be improved. Classic MPC optimization
problems exhibit a specific structure consistent
across applications. For a prediction horizon of
one time-step, the goal is to select an action
that will yield the best subsequent state accord-
ing to some objective function, state dynamics,
and constraints. When extended to a predic-
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Figure 1: The string diagram representing the
MPC problem structure.

tion horizon with N steps, the goal is to visit
a sequence of N states whose collective utility
is given by applying the same objective function
to each state, and summing the results. Simi-
larly, the dynamics and constraint functions of
the problem remain the same at each time step,
and the dynamics link one step to another, in
that the state reached after one time-step is the
initial state for the next step. Intuitively then,
MPC optimization problems can be seen as a
composite problem resulting from N copies of
some generating optimization problem that are
coupled by way of the state dynamics. We refer
to this as the compositional structure of the MPC
optimization problem. We emphasize that solu-
tions of optimization problems do not compose
in general, i.e. there is no general way to build up
an optimal solution to an N -step MPC problem
by solving N 1-step MPC problems. Thus the
compositional structure of MPC must be cap-
tured in a different way. To this end, we propose
a category theoretic framework that captures the
syntactic elements of this structure.

Results. To develop this framework, we lever-
age the theory of convex bifunctions introduced
in the seminal work of Rockefellar [8]. A con-
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vex bifunction subsumes a convex program into a
single function, and two bifunctions can be com-
posed in a way that uses the decision variables
of one problem to perturb the constraints of the
other. Our main contributions are the following.

1. We construct a symmetric monoidal cate-
gory called Conv whose objects are Eu-
clidean spaces and whose morphisms are
convex bifunctions representing constrained
convex optimization problems. This cate-
gory provides a formal setting for composing
optimization problems.

2. From Conv, we construct another category
Para(Conv) of parameterized convex pro-
grams. This category formalizes the im-
portant semantic distinction between state
variables and control variables in MPC op-
timization problems.

3. We show how convex MPC optimization
problems are represented by composite mor-
phisms in Para(Conv). Specifically, we
show how a model of an affine open-loop
control system together with a convex cost
function and convex constraints produce a
generating morphism in Conv and that the
associated MPC optimization problem over
a prediction horizon N is equivalent to the
N -fold composition of this generating mor-
phism with itself.

4. We demonstrate how to model initial and
terminal state constraints and costs in our
framework, which arise often in practice and
are generally necessary for stability.

5. We implement this framework in the Julia
programming language as a package called
AlgebraicControl.jl.

Our Julia implementation provides the follow-
ing benefits to control engineers.

• The automatic generation of MPC opti-
mization problems in a form directly pass-
able to commercial solvers such as IPopt
[9] requires only a description of system dy-
namics, one-step cost function, and one-step
constraints. This saves engineering time.

• The generated code is correct by construc-
tion, eliminating the possibility of imple-
mentation errors.

• Explicit modeling of the structure of MPC
optimization problems allows rapid and cor-
rect implementation of high-level modeling
changes, e.g. modification of system dy-
namics and constraints, modification of cost
functions, switching between receding and
moving horizon formulations, etc.

Discussion. The developed categorical frame-
work formally links model predictive control
problem formulations with convex optimization
problem formulations in way that captures the
intuitive, yet previously informal compositional
structure of MPC problems. This framework
applies the parameterized category construction
to the category of convex bifunctions to prop-
erly account for the semantic differences between
state variables and control inputs in MPC. We
construct a convex program for every convex
MPC problem such that the N -step horizon for
MPC is given by the N -fold composition of a sin-
gle parameterized bifunction. This insight has
led to a software implementation for simulation
of MPC controllers in the AlgebraicJulia ecosys-
tem that integrates with existing state of the art
solvers, via a code-generation approach. This
implementation leverages our theoretical results
to guarantee that the generated code is correct-
by-construction. In addition to correctness, we
argue that implementing software based on cat-
egory theoretic abstractions eases the implemen-
tation burden for both the developer and the
user.

Future work will address the categorical con-
struction of specialized convex optimization rou-
tines that can exploit the compositional struc-
ture of MPC problems as identified in this pa-
per. Additionally, although we focused specif-
ically on MPC problems for linear dynamical
systems, this framework can be extended to the
non-linear case in future work.
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