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Consider the problem of navigating a spacecraft through the vastness of space. Ensuring that it
follows its intended trajectory can require frequent corrections by appropriate application of thrust.
Knowing how to correct the trajectory necessitates first of all a good understanding of the spacecraft’s
current position and velocity. Since such orbit determination comes with inherent inaccuracies [TSB04],
it is essential to have a robust method to estimate the spacecraft’s true position based on the available
noisy observations. This is the type of problem which is addressed and optimally solved by the
mathematical framework of hidden Markov models and the Bayes filter. A hidden Markov model
describes the evolution of a spacecraft’s position and velocity as a Markov chain of “hidden states”
together with a sequence of noisy observations at each time step; the Bayes filter describes the optimal
inferences that can be made about the hidden states from the noisy observations [CMR05, S1̈3].

In the present work, we develop the theory of hidden Markov models and the Bayes filter for Markov
categories with conditionals in general. This provides two primary benefits over the traditional
formulation:

• It provides a unifying account of various special cases like discrete probability, Gaussian
probability (the Kalman filter), measure-theoretic probability and possibilistic nondeterminism.
• The string-diagrammatic formulation also sheds new light on the theory by providing a visually

intuitive picture of the information flow involved.

Moreover, we hope that our current results will also be able to provide a new approach to Blackwell’s
unique ergodicity problem [Cv10], which currently still remains open in the general case where both the
hidden states and the observed variables are continuous. However, this will still require us to develop
more ergodic theory in categorical probability first.

Let us now turn a more technical overview of our results. Throughout, we work in a Markov category
C with conditionals [Fri20], such as the category of standard Borel measurable spaces and Markov
kernels, or the category of sets and total relations.
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Hidden Markov Models. A hidden Markov model in a Markov category is any state that can be
written in this form:

g0

p

f1

g1

g2

Y0 X0 Y1 X1 Y2 X2
· · ·

f2

(1)

Here, the objects (Xi)i∈N correspond to the type of the hidden state, which may vary in time; the
objects (Yi)i∈N are likewise the types of the observations. The diagram can either have infinitely many
outputs, in which case its codomain is the Kolmogorov product [FR20]⊗

i∈N
(Yi ⊗Xi),

provided that that exists, or it can terminate after a finite number of steps. Our first main result is a
characterization of such hidden Markov models in terms of conditional independence, where the proof
makes important use of our earlier results on Bayesian networks and the d-separation criterion [FK23].
It in particular recovers the classical definition of hidden Markov models in terms of conditional
independence, as in:

Theorem 1. A state p : I →
⊗

i∈N (Yi⊗Xi) is a hidden Markov model if and only if it satisfies the conditional
independences

Xn+1 ⊥ X0, . . . ,Xn−1,Y0, . . . ,Yn | Xn, Yn+1 ⊥ X0, . . . ,Xn−1,Y0, . . . ,Yn−1 | Xn ∀n.

Our next considerations concern the Bayes filter. This gadget answers the following question: given
observations Y0, . . . ,Yn, what can we infer about the hidden state Xn? This is captured by marginaliz-
ing (1) on X0, . . . ,Xn−1 and forming the conditional on Y0, . . . ,Yn, which results in a morphism

BFn

Y0 Yn

Xn

· · ·

If the Markov category C is representable in the sense of [FGPR23], then the deterministic counterpart

BF♯
n, which takes values in the distribution object PXn, can be thought of as outputting our belief

about the hidden state given a sequence of observations.
We have developed the following results about the Bayes filter entirely in terms of string diagrams.

Theorem 2. There is a recursive construction of BFn in terms of BFn−1.

Plugging in a sequence of (deterministic) inputs into BFn results in a state on Xn which we call the
instantiated Bayes filter. In the Markov category Gauss, this construction specializes to the well-known
Kalman filter.

Theorem 3. The joint distribution of the filter posteriors BF♯
n is itself a Markov chain.
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This surprising result generalizes [Cv10, Lemma 2.4] to the setting of Markov categories.

Final note: We are currently also working on a computer implementation of all of this, and of the
Bayes filter in particular, and we expect to be able to present it as part of an ACT talk.
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