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We outline a categorical framework for convex analysis based on the notion of convex bifunction,
highlighting connections with categorical probability.

Convex analysis is a classical area of mathematics with numerous applications in optimization,
economics, physics, statistics and information theory. The central notion is that of a convex function
f : Rn → R into the extended reals R = [−∞,+∞], meaning its epigraph epi( f ) = {(x, t) : t ≥ f (x)} is
a convex subset of Rn+1. Convex analysis admits a beautiful duality theory; the ubiquitous Legendre-
Fenchel transform (or convex conjugation), defined as

f ∗(x∗) = sup
x

{⟨x∗,x⟩− f (x)}

decomposes f in terms of all affine function ⟨x∗,x⟩− c majorized by f . The function f ∗ is itself convex,
and under a closedness assumption we recover f ∗∗ = f . A useful way to combine convex functions is
infimal convolution

( f □ g)(x) = inf
y
{ f (x− y)+g(y)}

This operation is dual to addition, in the sense that epi( f □ g) = epi( f )+epi(g), and convex conjugation
interchanges the two ( f □ g)∗ = f ∗ + g∗, (cl( f ) + cl(g))∗ = cl( f ∗ □ g∗) where cl( f ) = f ∗∗ is lower-
semicontinuous closure.

Convex functions are not closed under composition. In order phrase convex analysis in compositional
terms, we invoke the notion of convex bifunction F : Rm ⇀ Rn, which is a curried convex function
F : Rm ×Rn → R [12]. Convex bifunctions compose as follows

(F ◦G)(x,z) = inf
y
{F(y,z)+G(x,y)}

and convex functions Rm →R are recovered as effects Rm ⇀ I. The category CxBiFn has the structure of
a hypergraph category [4], following the general construction [1, 9, 3] of relations valued in the commu-
tative quantale R [7, 15]. Convex conjugation can be extended to bifunctions and under semicontinuity
assumptions defines a contravariant equivalence with (F ◦G)∗ = G∗ ◦F∗ [12, § 38].

The goal of this talk is to clearly underline the compositional structure of convex analysis. The field
is full of exceptions and caveats (like the notion of properness) which makes a high level description
tricky. We propose to overcome this in two ways: (a) by extending the enriched-categorical treatment
of [15] to convex bifunctions, and (b) by identifying well-behaved subcategories of bifunctions in which
composition and duality work as desired. We elaborate some examples of interest:

Linear Algebra Let Vect denote the spaces Rn and linear maps A : Rm → Rn. We have a faithful
hypergraph embedding F : Vect → CxBiFn via indicator bifunctions1 FA(x,y) = {|y = Ax|}. Not only do
these bifunctions compose like linear maps, convex duality generalizes the dualities of linear algebra [2]:
the dual F∗

A is the the indicator bifunction of the adjoint map A∗. [12, § 30].
1we use the variant of Iverson brackets appropriate for convex analysis, i.e. {|ϕ|}= 0 if ϕ , otherwise +∞
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Convex Relations A convex relation R : Rm ↛Rn is a convex subset of R ⊆ Rm×n [1, 3, 9]. Convex
relations compose using ordinary relation composition, and indicator bifunctions FR(x,y) = {(x,y) ∈ R}
again define a hypergraph functor into CxBiFn. The duals of indicator functions are well-known as
support functions [12]. Conversely, we may consider the Writer monad T (X) = X ⊗R on CxRel for
the monoid (R,+,0). Every convex bifunction F : Rm ⇀ Rn becomes a Kleisli arrow via its epigraph
epi(F) : Rm ↛ T (Rn), and bifunction composition coincides with Kleisli composition in a wide range of
circumstances, with the precise relationship remaining to be clarified.

Probability Theory and Laplace Approximation Many widely used probability distributions (Gaus-
sian, Laplace, Dirichlet, Exponential, Uniform) are logconcave, meaning their logdensity h(x) = log f (x)
is concave. Using the formalism of Markov categories [6], we can naturally see categories of concave
bifunctions2 as abstract probability theories and study their relationship to measure-theoretic probability
categorically. Composition is maximization (mode-finding) instead of integration: This can be seen as
an approximation (Laplace approximation, method of steepest descent) to ordinary probability, that is
we approximate an integral

∫ b

a
exp(h(x))dx ≈

∫ b

a
exp

(
h(x0)+

1
2

h′′(x0)(x− x0)
2
)

dx

by fitting a Gaussian density around its mode x0 (e.g. [11]). The Laplace aproximation is a crucial
tool for example in predictive coding [5]. Convolution of probability densities

∫
fX(x)gY (z− x)dx is

approximated by the inf-convolution of logdensities. More formally the tropical semiring (R,max,+)
can be seen as a limit or deformation of [0,∞] under taking logarithms. This process is known as Maslov
dequantization [8] and gives rise to the field of idempotent mathematics, where the Legendre transform
becomes analogous to the Fourier transform in real analysis.

It is not surprising that the Laplace approximation is exact for Gaussian distributions; calculations
with Gaussian densities are equivalent to convex algebra with their negative logdensity counterparts,
which are quadratic functions. This defines a monoidal embedding from the Markov category Gauss

[6] into convex bifunctions (modulo scalars). The Legendre transform here takes the form of the duality
between densities (precision) and covariance.

By working with convex functions, a variety of phenomena becomes easier to define: For example,
there can be no measure-theoretic uniform distribution over R; the improper Lebesgue density 1 is not
normalizable, and the convolution 1 ∗ 1 = +∞ diverges. The negative logdensity 0 on the other hand is
normalized in CxBiFn, and the inf-convolution 0 □ 0 = 0 works as desired. This allows us to define a
hypergraph category of Gaussian relations [14] which includes Gaussian probability as well as linear rela-
tions (uninformative priors) purely in terms of convex analysis, where is corresponds to partial quadratic
convex functions (pqcfs). Conjugates of pqcfs are again pqcfs, generalizing the precision-covariance
duality from earlier [12, § 12].

More generally, for a random variable X , the cumulant-generating function cX(s) = logE[exp(sX)]
is always convex, and its convex conjugate c∗X is known as rate function, which has applications in
large deviations theory and variational inference [10, 16]. The notion of cumulant-generating function is
central to the study of exponential families, which seem like a promising direction for generalizing the
current theory.

2modulo additive constants, see automatic normalization in [13]
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