
Submitted to:
ACT 2023

© L. Dunn, V. Tannen & S. Zdancewic
This work is licensed under the
Creative Commons Attribution License.

Syntax Monads for the Working Formal Metatheorist

Lawrence Dunn
University of Pennsylvania

Philadelphia, USA
dunnla@seas.upenn.edu

Val Tannen
University of Pennsylvania

Philadelphia, USA
val@cis.upenn.edu

Steve Zdancewic
University of Pennsylvania

Philadelphia, USA
stevez@cis.upenn.edu

Formally verifying the properties of formal systems using a proof assistant requires justifying numer-
ous minor lemmas about capture-avoiding substitution. Despite work on category-theoretic accounts
of syntax and variable binding, raw, first-order representations of syntax, the kind considered by
many practitioners and compiler frontends, have received relatively little attention. Therefore appli-
cations miss out on the benefits of category theory, such as the deeply attractive promise of reusing
formalized infrastructural lemmas between implementations of different systems. Our Coq frame-
work Tealeaves provides libraries of reusable infrastructure for first-order representations of variable
binding, such as de Bruijn indices and locally nameless. In this paper we give a string-diagrammatic
account of decorated traversable monads (DTMs), the key abstraction implemented by Tealeaves.
We define DTMs as monoids of structured endofunctors before proving a representation theorem à
la Kleisli.

1 Introduction

Machine-certified proofs of the properties of programming languages, type theories, and other formal
systems are increasingly critical for establishing confidence in the design and implementation of com-
puter systems. Much of this reasoning is overtly concerned with the manipulation of syntactical struc-
tures, especially variable-binding constructs, making the representation of these structures a key issue in
formal metatheory [6]. As implementations scale in complexity to realistic formalizations of compilers
[36] and programming languages [23], often with many kinds of variables, the bookkeeping required to
manipulate variables correctly becomes nearly prohibitive.

Category-theoretic accounts of syntax with variable binding (e.g. [8, 17, 18, 19, 2]) offer the tan-
talizing benefit of formalizing tedious syntax “infrastructure” once and for all over an abstract choice
of signature, instead of repeating this effort for the particular syntax of each new system. However, the
kind of syntax usually considered by theorists—often intrinsically well-typed with well-scoped de Bruijn
indices—is different from what many working semanticists and compilers actually implement. Conse-
quently, the benefits of a principled categorical framework are not yet available to many applications.
This work lays the foundations of a category-theoretic account of variable binding as it often looks in
practice, with the aim of building certified libraries of generic syntax infrastructure that can be used (and
reused) in real-world applications.
Contributions. This manuscript contributes two insights into the foundations of raw, first-order syntax.

• We introduce the strict monoidal category DecTravW of decorated-traversable endofunctors on
Set for some monoid W (Definition 3.15) and define decorated-traversable monads (DTMs) as
monoids in this category (Definition 3.16). Examples of decorated-traversable functors include the
signature functors of languages with variable binding; the free monads they generate are DTMs.
As a corollary we gain the use of monoidal string diagrams to reason about operations on syntax.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Syntax Monads for the Working Metatheorist

• We prove an equivalence (Theorem 4.2) between monoids in DecTravW and a Kleisli-style pre-
sentation of DTMs (Definition 4.1) that describes a combinator for recursing on abstract syntax
trees.

As with ordinary (strong) monads [27], the Kleisli presentation is of more immediate utility from a
functional programming or formal metatheory perspective, in part because the definition requires check-
ing fewer axioms. In a previous, tool-oriented paper [16] we introduced Kleisli-presented DTMs and
used them to derive generic syntax infrastructure for first-order representations of variable binding in
Coq. However, that paper did not explain the categorical nature of DTMs or why the abstraction should
be considered “correct.” This paper justifies the axioms by proving their equivalence with a more clearly
principled, string-diagrammatic set of axioms. The results in this paper have been formalized in Coq and
are available in our GitHub repository.1

1.1 Layout

The rest is laid out as follows. Section 2 contains background on first-order representations of vari-
able binding. We recall that raw abstract syntax is naturally associated with a (free) monad; for such
monads, the Kleisli axiomatization provides a theory of naïve substitution. Kleisli arrows are not expres-
sive enough to define other operations of interest, most notably capture-avoiding substitution. Section 3
introduces the endofunctor categories DecW , Trav, and DecTravW . Section 4 derives a Kleisli-style char-
acterization of monoids in DecTravW and explains why this abstraction solves the problems identified in
Section 2. Section 5 contrasts our approach with related work. We conclude in Section 6. Appendices
A–D elaborate on the graphical calculus and categories defined in this paper.

Unless stated otherwise, the functors in this paper have type Set → Set. The reader should think of
these as parameterized container types such as lists, binary trees, and abstract syntax trees. We recall that
EndSet is the strict monoidal category whose objects are endofunctors on Set, whose arrows are natural
transformations, and whose tensor product is given by composition of functors. Finally, we recall that
all endofunctors on Set are canonically equipped with a tensorial strength, stA,B : A×FB → F(A×B),
given by pairing each element of the container with a copy of the A value.

2 First-order Representations of Variable Binding

The modern formal metatheorist has many options for representing and manipulating terms with variable
binding in a proof assistant. A major distinction is whether to employ a first-order or higher-order
approach. A higher-order representation uses functions in the metatheory to represent variable binding
in the formalized language; this sidesteps thorny issues like variable capture but is fairly removed from
syntax as represented in a compiler. First-order approaches represent terms as inductive datatypes. This
style is appealing because it is simple, intuitive, and well supported by general-purpose proof assistants
like Coq [11]. Theoretically, it provides familiar tools like initial algebras and structural recursion [12].

Within the family of first-order approaches, one can distinguish between intrinsic and extrinsic (or
raw) encodings. An intrinsic encoding uses the metatheory’s type system to enforce static constraints
on the syntax of the object theory. Intrinsically well-scoped terms, for example, are parameterized by
a context Γ and can have as free variables at most the ones declared in Γ. The more traditional raw
approach defines a single set of terms all at once. Properties like being well-scoped in Γ are then defined
post-hoc as predicates on terms, rather than inherent to their type.

1https://github.com/dunnl/tealeaves

https://github.com/dunnl/tealeaves

L. Dunn, V. Tannen & S. Zdancewic 3

We are concerned with raw, first-order representations. Even here one has a choice about how to
encode free and bound variables. Encoding strategies go by many names like fully named, de Bruijn
indices, de Bruijn levels, locally named, locally nameless, and variations of these. DTMs are independent
of a particular encoding and for now we shall remain agnostic about this choice. Figure 1 displays a
first-order definition of the set of raw lambda terms. The only unusual part of this definition is that
we parameterize the set of terms by a representation of variables V and binder annotations B. These
parameters will be fixed by a variable encoding strategy in Section 2.1.

Inductive term (B : Set) (V : Set) : Set :=
| Var : V -> term B V
| App : term B V -> term B V -> term B V
| Lam : B -> term B V -> term B V.

Figure 1: Syntax of the lambda calculus in Coq

bind f (Var v) = f v
bind f (App t1 t2) = App (bind f t1)(bind f t2)
bind f (Lam b t) = Lam b (bind f t)

Figure 2: bind instance for term

To concentrate on term as functor in V , we shall typeset B as a subscript. Associated to the lambda
calculus is a signature functor

Σλ ,BX
de f
= X ×X +B×X

encoding the domain of the two constructors of term besides Var. termBV is defined as the least fixpoint
µX .

(
V +Σλ ,BX

)
, i.e. as the smallest solution to the following equation:

termBV ≃V +termBV ×termBV +B×termBV.

By its least fixed point construction, termB (for any B) naturally forms a monad.
Definition 2.1. A monad T : Set → Set is a monoid in EndSet.

Appendix A unpacks this definition in terms of string diagrams. As a generalized monoid, T is
equipped with a unit retT and a multiplication joinT. For term, the unit is the Var constructor, intuitively
representing a coercion from variables to (atomic) terms. The multiplication flattens a termB (termBV)
into a termBV , witnessing the fact that term is closed under substitution of terms for variables. For
our purposes, defining monads as generalized monoids like this is somewhat abstruse; the following
presentation is more pragmatic.
Definition 2.2. A Kleisli-presented monad T : Set → Set is set-forming operation equipped with two
polymorphic operations

ret : ∀(A : Set) , A → TA
bind : ∀(A B : Set) , (A → T B)→ TA → T B

subject to the following three laws (implicitly universally quantified over all relevant variables).

bind ret = idT (2.1)

bind f · ret = f (2.2)

bind g ·bind f = bind (bind g · f) (2.3)

Lemma 2.3. Definitions 2.1 and 2.2 are equivalent.
See Lemma A.4 for a string-diagrammatic derivation of the Kleisli presentation.
Figure 2 gives the bind instance for term. We note that bind f t merely applies f to each variable

occurrence in t, replacing each with a subterm. We call this simple replacement operation a naïve substi-
tution. (2.1) states that replacing all variables with themselves yields the original t, while (2.2) is simply
the definition of bind on Var, and (2.3) governs the composition of multiple substitutions. The limitations
of naïve substitution become apparent as we turn our attention to particular schemes for representing free
and bound variables in lambda terms.

4 Syntax Monads for the Working Metatheorist

2.1 Variable Encodings

There are many schemes for representing variables and binding. We discuss two exemplary techniques.
Fully named A fully named approach assigns names, represented as atoms a ∈A, to both free and

bound variables, hence V = A. Variable-binding constructs are labeled with the names they introduce,
so B = A. The set termAA corresponds to the following pen-and-paper syntax of lambda terms:

t ::= a|tt|λa.t

Recall the main axiom of lambda calculus, the beta-conversion rule (λx.t1) t2 =β t1{t2/x}, where t1{t2/x}
stands for the capture-avoiding substitution of t2 in place of free occurrences of x in t1. For instance:

(λx.xz){z/x}=β λx.xz (λy.xz){z/x}=β λy.zz (λ z.xz){z/x}=β λy.zy

In the first case, x occurs bound and is not replaced, while in the second and third cases it occurs free
and is replaced with z. In the last case, z also happens to be the name of the distinct entity introduced by
the λ , so a naïve substitution would incorrectly result in the term λ z.zz. Therefore we rename this entity,
and all variables bound to it, to a non-conflicting name, say y. Renaming variables like this complicates
a fully named representation, and it also complicates the theory of DTMs. Therefore this manuscript
focuses on representations that do not require binder renaming, but see future work in Section 6.

Locally nameless The locally nameless strategy represents free variables as atoms, as before, but
represents bound variables as de Bruijn indices [14], natural numbers that describe the “distance” from
the occurrence to the abstraction that introduced it. For example, λx.λy.xyz becomes λλ10z. Thus V is
the (tagged) union A+N. For clarity, we use fvar and bvar as the names of the left and right injections
(respectively) into V .

Because the representation of a bound variable is canonical, we avoid the need to rename bound
variables. Binding constructs need not be annotated at all, which in our framework means annotating
them with type B= 1= {⋆}, the singleton. The set term1 (A+N) corresponds to the following grammar:

t ::= a|n|tt|λ t

An upside of locally nameless is that substitution of free variables is particularly simple: a variable is
free exactly when it is an atom, meaning it can never become bound. Consequently, capture-avoiding
substitution of free variables reduces to simply the naïve substitution.2 as defined in Figure 3a. This has
the following type, where subst x u t replaces x in t with u.

subst : A→ term1 (A+N)→ term1(A+N)→ term1 (A+N)

A moment’s reflection shows that subst can equivalently be defined as the bind of substloc, shown
in Figure 3b, where substloc defines the “local” effect of substitution on individual variable occurrences.
This presentation has practical value. substloc does not depend on the particulars of term, so this defini-
tion of subst is given entirely abstractly over a monad T . Moreover, we can use the monad laws to reason
about it, exemplified in the following lemma.
Lemma 2.4. Let T be any monad, and let x and y (x ̸= y) be atoms. Let t[x 7→ u] denote subst x u t as
defined in Figure 3b. Substitution has the following properties:3

x[x 7→ t] = t t[x 7→ x] = t t[x 7→ u1][y 7→ u2] = t
[
x 7→ u1[y 7→ u2];y 7→ u2

]
2More precisely, this operation cannot lead to capture assuming the new subterm satisfies a well-formedness property called

local closure.
3Where x is used as a term, it is understood as the atomic term ret (fvar x). In the third equation, the right side mentions

the parallel substitution that simultaneously replaces all x with u1[y 7→ u2] and y with u2.

L. Dunn, V. Tannen & S. Zdancewic 5

subst x u (Var v) =

{
u if v = fvar x

Var v else

subst x u (App t1 t2) = App (subst x u t1) (subst x u t2)

subst x u (Lam ⋆ t) = Lam ⋆ (subst x u t)

(a) Structurally recursive definition

subst x u t = bind (substloc x u) t

substloc x u v =

{
u if v = fvar x

ret v else

(b) Definition abstract over a choice of monad

Figure 3: Substitution of atoms in a locally nameless representation

Lemma 2.4 is easily proven abstractly over T by appealing to equations (2.1)–(2.3). On the other
hand, here is a lemma that cannot be stated and proven abstractly over T :

Lemma 2.5 (fresh-subst). If an atom x does not occur in t, then t[x 7→ u] = t.

Lemma 2.5 cannot be formulated abstractly because we lack a mechanism for defining what it means
for an atom to occur in a term—occurrence is a predicate, and bind does not provide a mechanism for
defining predicates. We can of course prove the lemma for term in particular by structural recursion,
but this is no longer generic over a choice of T and cannot be shared by users formalizing a different
syntax. In order to reason about syntax as a container (of occurrences of variables) like this, we define
traversable monads in Section 3.2. This definition admits a generic proof of Lemma 2.5.

To implement β -reduction, a locally nameless formalization must also define the operation of open-
ing one term by another, shown in Figure 4a. The β -conversion rule then takes the form (λ t)u =β tu,
where tu stands for the opening of t by u, defined by replacing all indices in t previously bound to the
outermost λ with u. Note that the replaced variables are de Bruijn indices rather than free variables,
hence opening is distinct from substitution of atoms. Unlike the case with atoms, the replaced indices do
not all have the same representation: the representation of an index bound to the outer lambda depends
on how many other abstractions are in scope at the occurrence—both 0 and 1 in λ (0λ1) point to the
outer λ , for instance. Therefore open is defined with an auxiliary function that maintains a count of
how many binders we have gone under during recursion. In order to define operations that maintain an
“accumulator” argument like this, we introduce decorated monads in Section 3.1.

As a final example, some locally nameless terms, e.g. λ (01), do not correspond to ordinary lambda
terms because they have indices (in this example, the 1) that do not “point” to any abstraction. Therefore
one restricts attention to terms that are locally closed, defined in Figure 4b. Like open, LC is defined
with a helper function that counts the number of binders gone under during recursion. Additionally, we
note that LC computes a boolean value instead of a term. To define and reason about LC, one must
integrate both concepts above to define decorated-traversable functors and DTMs. Σλ ,B is an example
of a decorated-traversable functor, and termB is a DTM. As demonstrated by our library Tealeaves, this
abstraction suffices to prove a large suite of infrastructural lemmas about the operations above.

3 Decorated Traversable Functors

We introduce decorated and traversable monads separately before incorporating both to form DTMs.
We concentrate on high-level intuitions; Appendices B–D elaborate on the categories and constructs
involved. We present definitions type-theoretically alongside a graphical notation (color-coded for ease
of reading but unambiguously labelled) defined more thoroughly in the appendices.

6 Syntax Monads for the Working Metatheorist

open : term1(A+N)→ term1(A+N)→ term1(A+N)
open u t = open0 u t

openn u (Var v) =

{
u if v = bvar n
Var v else

openn u (App t1 t2) = App (openn u t1)(openn u t2)
openn u (Lam ⋆ t) = Lam ⋆

(
openn+1 u t

)
(a) Opening a lambda term by u

LC : term1(A+N)→ 2
LC t = LC0 t

LCn (Var v) =

{
⊥ if v = bvar m and n ≤ m
⊤ else

LCn (App t1 t2) = LCn t1 ∧ LCn t2
LCn (Lam ⋆ t) = LCn+1 t

(b) Testing for local closure

Figure 4: Operations on locally nameless terms

3.1 Decorations

The category DecW of decorated functors is parameterized by some monoid W . Hereafter let W be given.
In Tealeaves, W is typically the free monoid list B (i.e. lists of annotations on binders).

Fans of monoidal category theory will recall the elementary fact that all monoids in Set uniquely
extend to form bimonoids—a coherent combination of a monoid and comonoid. From this fact, the
product-with-W functor (W×−) is itself a bimonoid in EndSet, i.e. a bimonad. Decorated functors are
defined as right coalgebras (or comodules) of this bimonad. By a well-known construction, (co)algebras
of bimonoidal objects form a monoidal category (see Appendix B), which naturally leads to the definition
of decorated monads as monoids in DecW . Below we step through this construction more slowly.

As a first step, it is an exercise in definitions to verify that every set E is the carrier of exactly one
comonoid, the duplication comonoid over E. This structure captures the essence of classical information
and its fundamental operations of duplication and deletion.

Definition 3.1. The duplication comonoid over E : Set is given by the following operations.

del : E → 1 del e = ⋆
∆ : E → E ×E ∆ e = (e,e)

The duplication comonoid induces a comonad on (E ×−) known to functional programmers as the
environment or reader comonad. More precisely, the embedding

E 7→ (E ×−) : Set → EndSet

is strong monoidal,4 hence it preserves monoids and comonoids.

Definition 3.2. The environment comonad over E : Set is given by the product functor (E ×−) paired
with the following operations of extraction and duplication.

extrE× : ∀(A : Set) , E ×A → A extrA(e,a) = a
dupE× : ∀(A : Set) , E ×A → E × (E ×A) dupA(e,a) = (e,(e,a))

The co-Kleisli arrows of the environment comonad have the form E ×A → B. In functional pro-
gramming, this comonad captures computations A → B that additionally can read, but not modify, an

4As opposed to merely lax or oplax monoidal, not to be confused with tensorial strength.

L. Dunn, V. Tannen & S. Zdancewic 7

environment of type E, such as a user-supplied configuration file. This is a classic example of the gen-
eral intuition that while monads can be used to structure computations with “effects”, comonads represent
notions of computation that depend on a “context.” [34].

Let W = ⟨W, ·,1W ⟩ be a monoid. Mirroring the duplication comonoid, the monoid on W endows
(W ×−) with a monad structure known variously as the writer or logger monad.

Definition 3.3. The writer monad over W : Set is given by the product functor (W ×−) paired with the
following operations.

retW× : ∀(A : Set) , A →W ×A retW×
A a = (1W ,a)

joinW× : ∀(A : Set) , W × (W ×A)→W ×A joinW×
A (w1,(w2,a)) = (w1 ·w2,a)

Note that the carrier set W of the monoid is also equipped with its unique comonoid structure. Cru-
cially, we can say more: the monoid and comonoid operations are all homomorphisms of the other
structure (in a precise sense), such that W is a bimonoid. Lifting this up to EndSet, any instance of
the writer monad (W×−) is also an instance of the environment comonad, and in fact (W×−) is a
bimonad. Appendix B elaborates on this point.

If one thinks about functors as functional data structures, then a decorated functor is one whose
elements each occur in a context of type W . To our knowledge definition is novel.

Definition 3.4. A decorated functor T : Set → Set is a right coalgebra of the writer bimonad (W×−).
Explicitly, it is a functor equipped with a natural transformation

T
T

W×
dec : ∀(A : Set) , TA → T (W ×A)

subject to the following equations:

T T=
T

T

mapTextrW×
A ·decT

A = idTA (3.1)

=
T

T
W×

T

T

W×

W×

W×

decW×A ·decA = mapTdupW×
A ·decA (3.2)

In this paper, the writer bimonad is drawn with a red wire whereas plain functors are shown in black.
Intuitively, (3.1) states that computing the context of every element and immediately deleting it is the
same as doing nothing. (3.2) states that computing each context once and making a copy of it is the same
as computing the context twice.

Example 3.5. The functor Σλ ,B is decorated by listB (the free monoid over B). The operation is defined
as follows (where by abuse of notation we give constructors of Σλ the same name as corresponding
constructors of term):

decX : Σλ ,BX → Σλ ,B (listB×X)

dec (App x1 x2) = App ([],x1) ([],x2)
dec (Lam b x) = Lam b ([b],x)

Notation: [] is the empty list, while [b] is a singleton.

Intuitively, the decoration in Example 3.5 encodes the policy determining which constructors act as
binders in which arguments. The policy states that an abstraction λb.x adds b to the binding context of
all occurrences in its body, but applications contribute nothing to the binding context of variables.

8 Syntax Monads for the Working Metatheorist

Lemma 3.6. Decorated functors and decoration-preserving natural transformations form a monoidal
category, DecW . c.f. Appendix, Lemma B.6.

In this paper, functors equipped with monadic structure are depicted with blue wires. Since DecW is
a monoidal category, it makes sense to generalize monads to decorated monads, i.e. monoidal objects in
DecW . Besides the monad laws and (3.1)–(3.2), decorated monads satisfy two more equations.
Definition 3.7. A decorated monad is a monoid in DecW . Explicitly, it is equipped with the structures of
both a decorated functor and a monad such that the following equations are also satisfied.

=
W×

T

W×

T

decA · retTA = retTW×A · retW×
A (3.3)

=
T

T W×

T T

T

T

W×

decA · joinT
A = joinT·W× ·decT(W×A) ·mapT (decA) (3.4)

In the context of syntax metatheory, (3.3) states that an atomic term (some Var x) has no binders—
the context of x is the monoid unit, typically the empty list or the natural number 0. (3.4) governs
how decoration behaves when we compose constructors to form complex syntax trees. It states that the
context of each variable instance is the concatenation of the context contributed by each constructor. That
is, binders accumulate as we recurse down a syntax tree.
Example 3.8. The monad termB is decorated by listB. The operation annotates each variable with the
list of B values encountered on the unique path from root of the syntax tree to the variable occurrence.
We show examples using fully named and locally nameless variables:

dec : termAA→ termA (listA×A)
λx.λy.yx 7→ λx.λy.([x,y],y)([x,y],x)

(λx.z)(λx.yλy.z) 7→ (λx.([x],z))(λx.([x],y)λy.([x,y],z))

dec : term1 (A+N)→ term1 (N× (A+N))
λλ01 7→ λλ (2,0)(2,1)

(λ0)(λλ1) 7→ (λ (1,0))(λλ (2,1))

Note that in the locally nameless example we make the implicit identification list1 ≃ N.

3.2 Traversals

Intuitively, a traversable data structure is a finitary container we can “iterate” [21] over, such as a list or
tree type. McBride and Paterson [26] defined traversable functors as those equipped with a distributive
law over applicative functors (i.e. lax monoidal endofunctors on Set). Lacking a suitable set of axioms,
the notion was found to be too coarse, and subsequent work [21, 22] refined the notion. Waern [35]
defined the category of traversable functors. The notion of a traversable monad appears to be novel.
Definition 3.9. An applicative functor is a lax monoidal functor on Set. See Definition C.1.

In brief, an applicative functor F is one that “preserves” Cartesian product in the sense that there is
a natural transformation FA×FB → F(A×B). This class includes the identity functor 1 and is closed
under composition. An important special case is the constant functor mapping all sets to some monoid
M and all functions to idM, in which case the previous operation can be identified with multiplication in
M.
Definition 3.10. An applicative morphism φ : F → G between applicative functors is one that respects
their applicative structure in an obvious way. See Definition C.2.

L. Dunn, V. Tannen & S. Zdancewic 9

Definition 3.11. A traversable functor T : Set → Set is a functor paired with a family of distributions

T
F

F
T dist : ∀(A : Set) , T (FA)→ F(TA)

where F ranges over applicative functors. This operation is subject to the following laws (with φ ranging
over applicative morphisms).

dist1,A = idTA (3.5)

mapF (distG,A
)
·distF,GA = distF·G,A (3.6)

distG,A ·mapT (φA) = φTA ·distF,A (3.7)

The connection between traversability and container-like properties is best exemplified by choosing
F to be a constant functor over a monoid M. Then, the type of dist reduces to T M → M. Intuitively,
T contains a finite number of elements, so that when all elements have type M, we can combine them
together using multiplication in M. Gibbons and Oliveira pointed out that (3.5) forbids this operation
from “skipping” any elements in T , while Jaskelioff and Rypacek pointed out that (3.6) forbids this
operation from “double counting” any elements.

Lemma 3.12. Traversable functors and distribution-respecting natural transformations form a monoidal
category, Trav. c.f. Lemma C.7.

Definition 3.13. A traversable monad T is a monoid in Trav. Explicitly, T has the structures of both a
traversable functor and a monad and satisfies the following equations:

=
F

T

F

T

F

F

distF,A · retTFA = mapF
A
(
retTA

)
(3.8)

=T

F

T
T

T

F

T

F
T

F

distTF,A · joinFA = mapF (joinA) ·distT·TF,A (3.9)

Though the laws appear opaque, for syntax metatheory, (3.8) states that a term formed from ret/Var
contains only a single variable. (3.9) implies that substituting a subterm u for x in t adds the occurrences
in u to the set of occurrences of t. This concept is more thoroughly examined in [16].

3.3 Decorated Traversable Functors

For functors that are both traversable and decorated, it is necessary to impose one more condition. For
the following definition, we note that (W×−) is uniquely traversable.

Definition 3.14. A decorated-traversable functor is equipped with the structures of both a decorated and
traversable functor, subject to the following condition:

=T

F

T

W

F

T

F

T

W

F

mapFdecA ·distTF,A = distTF,W×A ·mapT
(

distW×
F,A

)
·decFA (3.10)

10 Syntax Monads for the Working Metatheorist

Definition 3.15. Decorated traversable functors and their structure-preserving natural transformations
form a strict monoidal category, DecTravW . c.f. Lemma D.4.

Definition 3.16. A decorated traversable monad (DTM) is a monoid in DecTravW .

The force of Definition 3.16 is as follows. First, as an object in DecTravW , T is equipped with
a decoration and traversal satisfying (3.10). Furthermore, it is a monad such that both of the monad
operations commute with decorations and traversals. Self-contained equational and string-diagrammatic
presentations of this definition are given in the Appendix, Definition D.5.

4 Kleisli Representation for DTMs

Definition 3.16 is phrased in terms of principled categorical abstractions and offers the opportunity for
string-diagrammatic reasoning. In practice, particularly in a theorem prover, it is tedious to prove a
given syntax forms a DTM, as this requires defining five operations subject to a total of 19 equations.
The following Kleisli-style definition, mirroring Definition 2.2, is more economical and more useful to
program with. First, we define an auxiliary helper function to be used in (4.3).

Definition 4.1 (DTMs, Kleisli-style). A Kleisli-presented DTM is a set-forming operation T equipped
with two operations of the following types

ret : ∀(A : Set) , A → TA
binddt : ∀(F : Applicative)(A : Set) , (W ×A → F(T B))→ TA → F (T B)

subject to the following laws (where φ is quantified over applicative morphisms φ : F ⇒ G)

binddt1 (ret · extr) = idTA (4.1)

binddtF f · ret = f · retW× (4.2)

mapF (binddtG g) · (binddtF f) = binddtF·G
(
λ (w,a).mapF (binddtG (g⊙w)) f (w,a)

)
(4.3)

φ ·binddtF f = binddtG (φ · f) (4.4)

In (4.3), (⊙) is defined (f ⊙w1)(w2,a)
de f
= f (w1 ·w2,a).

The following theorem speaks to the robustness of Definition 4.1.

Theorem 4.2. Definitions 3.16 and 4.1 are equivalent.

Proof. The ret operation is the same for both presentations. Given map, join, dec, and dist, we define
binddt as follows:

binddtF f
de f
= mapF (joinT

B
)
·distTF ·mapT f ·dec. (4.5)

Given ret and binddt, we define the operations of DTMs thus:

map f
de f
= binddt1

(
retT · f · extrW×) dec

de f
= binddt1

(
retT

)
join

de f
= binddt1

(
extrW×) dist

de f
= binddtF

(
ret · extrW×)

Appendix D.6 contains a string-diagrammatic derivation of the Kleisli presentation. To be an equiv-
alence, we must also verify the other direction and check that starting with either representation and
completing a roundtrip returns the original set of operations. A full proof of this fact can be found in our
GitHub repository.

L. Dunn, V. Tannen & S. Zdancewic 11

Example 4.3. The binddt operation for termB is defined as follows (for any f : W ×A → F(T B)):

binddtF f (Var v) = f([],v)
binddtF f (App t1 t2) = pureF App ⊛ (binddtF f t1)⊛ (binddtF f t2)
binddtF f (Lam b t) = pureF (Lam b) ⊛ (binddtF (f ⊙ [b]) t)

N.B. ⊛ is the idiomatic application of applicative functor F. See Appendix C.

Like bind, binddt can be seen as a template for defining structurally recursive operations on abstract
syntax trees. However, it is appreciably more expressive, introducing two new features. First, the first
argument of f is now a list of binders in scope at each variable. Second, the output of f is wrapped in
an applicative functor, and all function application is replaced with idiomatic application. Incorporating
these aspects greatly expands the range of operations we can define generically.

4.1 Substitution Metatheory

Figure 5 contains generic versions of the opening operation and local closure. These operations are
defined for any DTM T. As instances of binddt, we can reason about these operations axiomatically.
Note that in the definition of LC, the boolean type 2 stands for the constant applicative functor over the
monoid ⟨2,∧,⊤⟩, which provides a form of universal quantification over variables.

openloc : T(A+N)→ N× (A+N)→ T(A+N)
openloc u (n,fvar a) = ret (fvar a)

openloc u (n,bvar m) =

{
u if n = m

retT (bvar m) else

open u = binddtT1 (openloc u)

LCloc : N× (A+N)→ 2
LCloc (n,fvar a) =⊤

LCloc (n,bvar m) =

{
⊥ if n ≤ m
⊤ else

LC = binddtT2 LCloc

Figure 5: Generic locally nameless operations for a DTM T

The adequacy of Definition 4.1 for the needs of working metatheorists is an empirical one demon-
strated by formalizing generic syntax metatheory with it. For comparison, Weirich and Aydemir previ-
ously introduced LNgen [5], a code generator that accepts a grammar and synthesizes files containing
locally nameless infrastructure for it in Coq. Using Tealeaves, we were able to formalize all of the in-
frastructure lemmas defined in [5], as well as others, statically and generically over a choice of arbitrary
DTM. We have not found any lemmas of the locally nameless representation that we cannot prove in this
fashion. The advantage of Tealeaves over LNgen is that our lemmas are proved once and for all, while
LNgen generates proofs specific to a given signature. Because it relies on heuristics and Ltac [15] (Coq’s
incompletely specified proof automation language), the authors have reported in private correspondence
that LNgen can fail to prove some lemmas. Additionally they have reported long compile times which
must be re-endured after any changes to the user’s syntax. These downsides do not apply to Tealeaves be-
cause it is a static Coq library rather than a program. The cost of entry is to furnish a proof of (4.1)–(4.4),
which is straightforward to automate.

We have also developed a generalization of DTMs for languages with multiple sorts of variables, and
re-derived the same locally nameless infrastructure, now extended to reason about operations affecting
different sorts of variables. Tealeaves can also be used to formalize de Bruijn indices and levels [14].

12 Syntax Monads for the Working Metatheorist

5 Related Work

Bellegarde and Hook [8] first considered term monads in the context of formal metatheory. They defined
substitution for a de Bruijn encoding in terms of a combinator Ewp (“extend with policy”) which is similar
in spirit to, but strictly less expressive than, binddt. Lacking axioms comparable to (4.1)–(4.4), they were
unable to reason about substitution generically.

Subsequent work has generally considered intrinsically well-scoped [4] and well-typed [10, 25, 3]
representations using heterogeneous datatypes [9]. Leveraging the metatheory’s type system to constrain
object terms will tend to lead to a more dependently-typed style of programming where operations and
their correctness properties are woven together. Building on this line of work, Ahrens et al. [2] have re-
cently proposed an intrinisically typed language formalization framework in Coq. The goal of Tealeaves
is to support raw syntax, which involves defining operations first and reasoning about them post factum.

Fiore and collaborators [17, 18] have developed a presheaf-theoretic account of syntax. Subsequent
work by Power and Tanaka axiomatized and expanded the presheaf-theoretic approach [29, 30]. The
basic idea is that intrinsically scoped terms are stratified by a context—the set of all contexts is then used
as the indexing category for the presheaves. In our development, syntax is parameterized by types V and
B for representations of variables and binder annotations. These are fixed by a particular representation
strategy (e.g. locally nameless) and one is left with a single set of terms rather than a presheaf. Fiore and
Szamozvancev have proposed a intrinsically well-scoped, well-typed, syntax formalization framework
in Agda [19] which takes inspiration from the presheaf approach.

Approaches that differ more dramatically from ours include strategies based on nominal sets [20]
and variations of higher-order abstract syntax [28, 13].

Besides LNgen, utilities similar in spirit to Tealeaves include GMeta [24] and Autosubst [32, 33].
GMeta is a Coq framework for generic raw, first-order syntax. Like Tealeaves, it is parameterized by a
variable encoding strategy. GMeta resorts to proofs by induction on a universe of representable types,
while Tealeaves is based on a principled equational theory. Autosubst is an equational framework for
reasoning about de Bruijn indices in Coq based on explicit substitution calculi [1, 31]. Our binddt can
express de Bruijn substitution; it may be enlightening to consider DTMs vis-à-vis these calculi.

6 Conclusion and Future Work

We have presented decorated traversable monads, an enrichment of monads on the category of sets that
can be used to reason equationally about raw, first-order representations of variable binding.

As presented, DTMs are not equipped with a binder-renaming operation necessary to implement a
fully named binding strategy. A first step in this direction is to recognize that term is also a functor in B
besides V , yielding an operation

bmap : ∀(V B1 B2 : Set) ,(B1 → B2)→ termB1V → termB2V

We are investigating an extension of DTMs that incorporates the functor instance in B. One intended
application is to provide a certified generic translation between a named and locally nameless represen-
tation, which could be used as part of a certified compiler, for example.

Imposing a distributive law over all applicative functors forces imposes an order on variable occur-
rences, which may be unnecessarily strong. Some process calculi, for example, consider a notion of
parallel composition | such that formulas p1|p2 and p2|p1 should be taken as syntactically identical. To
support quotiented syntax, one could require a distributive law only over some applicative functors, like
commutative ones.

L. Dunn, V. Tannen & S. Zdancewic 13

References

[1] M. Abadi, L. Cardelli, P.-L. Curien & J.-J. Lévy (1991): Explicit substitutions. Journal of Functional Pro-
gramming 1(4), p. 375–416, doi:10.1017/S0956796800000186.

[2] Benedikt Ahrens, Ralph Matthes & Anders Mörtberg (2022): Implementing a Category-Theoretic Frame-
work for Typed Abstract Syntax. In: Proceedings of the 11th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2022, Association for Computing Machinery, New York, NY, USA, p.
307–323, doi:10.1145/3497775.3503678. Available at https://doi.org/10.1145/3497775.3503678.

[3] Guillaume Allais, James Chapman, Conor McBride & James McKinna (2017): Type-and-Scope Safe Pro-
grams and Their Proofs. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs, CPP 2017, Association for Computing Machinery, New York, NY, USA, p. 195–207,
doi:10.1145/3018610.3018613. Available at https://doi.org/10.1145/3018610.3018613.

[4] Thorsten Altenkirch & Bernhard Reus (1999): Monadic Presentations of Lambda Terms Using Generalized
Inductive Types. In: Proceedings of the 13th International Workshop and 8th Annual Conference of the
EACSL on Computer Science Logic, CSL ’99, Springer-Verlag, Berlin, Heidelberg, p. 453–468.

[5] Brian Aydemir & Stephanie Weirich (2010): LNgen: Tool Support for Locally Nameless Representations.
Technical Report, University of Pennsylvania, Department of Computer and Information Science.

[6] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter
Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich & Steve Zdancewic (2005): Mech-
anized Metatheory for the Masses: The PoplMark Challenge. In: Proceedings of the 18th International
Conference on Theorem Proving in Higher Order Logics, TPHOLs’05, Springer-Verlag, Berlin, Heidelberg,
p. 50–65, doi:10.1007/11541868_4. Available at https://doi.org/10.1007/11541868_4.

[7] Tørris Koløen Bakke (2007): Hopf Algebras and Monoidal Categories. Master’s thesis, University of Tromsø.

[8] Françoise Bellegarde & James Hook (1994): Substitution: A Formal Methods Case Study Using Monads
and Transformations. Sci. Comput. Program. 23(2–3), p. 287–311, doi:10.1016/0167-6423(94)00022-0.
Available at https://doi.org/10.1016/0167-6423(94)00022-0.

[9] Richard Bird & Lambert Meertens (1998): Nested datatypes. In: In MPC’98, volume 1422 of LNCS,
Springer-Verlag, pp. 52–67.

[10] Richard Bird & Ross Paterson (1999): de Bruijn notation as a nested datatype. Journal of Functional Pro-
gramming 9, pp. 77 – 91, doi:10.1017/S0956796899003366.

[11] Pierre Boutillier, Stephane Glondu, Benjamin Grégoire, Hugo Herbelin, Pierre Letouzey, Pierre-Marie Pé-
drot, Yann Régis-Gianas, Matthieu Sozeau, Arnaud Spiwack & Enrico Tassi (2014): Coq 8.4 Reference Man-
ual. Research Report, Inria. Available at https://hal.inria.fr/hal-01114602. The Coq Development
Team.

[12] Rod M. Burstall (1969): Proving Properties of Programs by Structural Induction. Comput. J. 12, pp. 41–48.

[13] Adam Chlipala (2008): Parametric Higher-Order Abstract Syntax for Mechanized Semantics. In: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP ’08, Associa-
tion for Computing Machinery, New York, NY, USA, p. 143–156, doi:10.1145/1411204.1411226. Available
at https://doi.org/10.1145/1411204.1411226.

[14] N.G de Bruijn (1972): Lambda calculus notation with nameless dummies, a tool for automatic for-
mula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Pro-
ceedings) 75(5), pp. 381–392, doi:https://doi.org/10.1016/1385-7258(72)90034-0. Available at https:
//www.sciencedirect.com/science/article/pii/1385725872900340.

[15] David Delahaye (2000): A Tactic Language for the System Coq. In Michel Parigot & Andrei Voronkov,
editors: Logic for Programming and Automated Reasoning, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 85–95.

[16] Lawrence Dunn, Val Tannen & Steve Zdancewic (2023): Tealeaves: Structured monads for generic first-
order abstract syntax infrastructure. To appear.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/11541868_4
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1017/S0956796899003366
https://hal.inria.fr/hal-01114602
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340

14 Syntax Monads for the Working Metatheorist

[17] M. Fiore, G. Plotkin & D. Turi (1999): Abstract syntax and variable binding. In: Proceedings. 14th Sympo-
sium on Logic in Computer Science (Cat. No. PR00158), pp. 193–202, doi:10.1109/LICS.1999.782615.

[18] Marcelo Fiore (2008): Second-Order and Dependently-Sorted Abstract Syntax. In: Proceedings of the 2008
23rd Annual IEEE Symposium on Logic in Computer Science, LICS ’08, IEEE Computer Society, USA, p.
57–68, doi:10.1109/LICS.2008.38. Available at https://doi.org/10.1109/LICS.2008.38.

[19] Marcelo Fiore & Dmitrij Szamozvancev (2022): Formal Metatheory of Second-Order Abstract Syntax.
Proc. ACM Program. Lang. 6(POPL), doi:10.1145/3498715. Available at https://doi.org/10.1145/
3498715.

[20] Murdoch J. Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding.
Form. Asp. Comput. 13(3–5), p. 341–363, doi:10.1007/s001650200016. Available at https://doi.org/
10.1007/s001650200016.

[21] Jeremy Gibbons & Bruno Oliveira (2009): The essence of the Iterator pattern. J. Funct. Program. 19, pp.
377–402, doi:10.1017/S0956796809007291.

[22] Mauro Jaskelioff & Ondrej Rypacek (2012): An Investigation of the Laws of Traversals. Electronic Proceed-
ings in Theoretical Computer Science 76, doi:10.4204/EPTCS.76.5.

[23] Ramana Kumar, Magnus O. Myreen, Michael Norrish & Scott Owens (2014): CakeML: a verified implemen-
tation of ML. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pp. 179–192, doi:10.1145/2535838.2535841.
Available at http://doi.acm.org/10.1145/2535838.2535841.

[24] Gyesik Lee, Bruno C. D. S. Oliveira, Sungkeun Cho & Kwangkeun Yi (2012): GMeta: A Generic Formal
Metatheory Framework for First-Order Representations. In Helmut Seidl, editor: Programming Languages
and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 436–455.

[25] Conor McBride (2005): Type-Preserving Renaming and Substitution. Unpublished note.

[26] Conor McBride & Ross Paterson (2008): Applicative Programming with Effects. J. Funct. Program. 18(1), p.
1–13, doi:10.1017/S0956796807006326. Available at https://doi.org/10.1017/S0956796807006326.

[27] Eugenio Moggi (1988): Computational Lambda-Calculus and Monads. IEEE Computer Society Press, pp.
14–23.

[28] Frank Pfenning & Conal Elliott (1988): Higher-Order Abstract Syntax. 23, pp. 199–208,
doi:10.1145/960116.54010.

[29] John Power (2003): A Unified Category Theoretic Approach to Variable Binding. In: Proceedings of the
2003 ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding, MER-
LIN ’03, Association for Computing Machinery, New York, NY, USA, p. 1–9, doi:10.1145/976571.976578.
Available at https://doi.org/10.1145/976571.976578.

[30] John Power & Miki Tanaka (2008): Category Theoretic Semantics for Typed Binding Signatures with Recur-
sion. Fundam. Informaticae 84, pp. 221–240.

[31] Steven Schäfer, Gert Smolka & Tobias Tebbi (2015): Completeness and Decidability of de Bruijn Substi-
tution Algebra in Coq. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP
’15, Association for Computing Machinery, New York, NY, USA, p. 67–73, doi:10.1145/2676724.2693163.
Available at https://doi.org/10.1145/2676724.2693163.

[32] Steven Schäfer, Tobias Tebbi & Gert Smolka (2015): Autosubst: Reasoning with de Bruijn Terms and Parallel
Substitutions. In Xingyuan Zhang & Christian Urban, editors: Interactive Theorem Proving - 6th International
Conference, ITP 2015, Nanjing, China, August 24-27, 2015, LNAI, Springer-Verlag.

[33] Kathrin Stark, Steven Schäfer & Jonas Kaiser (2019): Autosubst 2: Reasoning with Multi-Sorted de Bruijn
Terms and Vector Substitutions. In: Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Association for Computing Machinery, New York, NY, USA, p.
166–180, doi:10.1145/3293880.3294101. Available at https://doi.org/10.1145/3293880.3294101.

https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.4204/EPTCS.76.5
https://doi.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/976571.976578
https://doi.org/10.1145/976571.976578
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/3293880.3294101

L. Dunn, V. Tannen & S. Zdancewic 15

[34] Tarmo Uustalu & Varmo Vene (2008): Comonadic Notions of Computation. Electronic Notes in Theoret-
ical Computer Science 203(5), pp. 263–284, doi:https://doi.org/10.1016/j.entcs.2008.05.029. Available at
https://www.sciencedirect.com/science/article/pii/S1571066108003435. Proceedings of the
Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS 2008).

[35] Love Waern (2019): Cofree Traversable Functors. Bachelor’s thesis.
[36] Jianzhou Zhou, Santosh Nagarakatte, Milo Martin & Steve Zdancewic (2012): Formalizing the

LLVM Intermediate Representation for Verified Program Transformations. 47, pp. 427–440,
doi:10.1145/2103621.2103709.

In the Appendices we present a string-diagrammatic account of DecTravW and DTMs. Appendix
A is a brief and informal introduction to string diagrams for strict monoidal categories (specifically
EndSet). B presents decorated functors and DecW . C presents traversable functors and Trav. D presents
DecTravW and proves one direction of Theorem 4.2 (the other direction is deeply tedious and is formal-
ized in Tealeaves).

A String Diagrams for Endofunctor Categories

Here we briefly review monoidal string diagrams, a two-dimensional notation for monoidal categories.
The primary advantage of such notation is that it inherently “quotients out” mundane structural equalities.
Our library Tealeaves is formalized entirely in Coq, where such quotienting is not automatic and the
notation is quite noisy, to the point it is hard to see the forest for the trees. Here, string diagrams provide
a useful aid that depicts the important structure behind DTMs.

We work in the category EndSet of endofunctors on the category of sets. The objects of this cate-
gory are endofuntors F : Set → Set, with morphisms given by natural transformations. We recall basic
definitions.
Definition A.1. A functor is a type constructor T : Set → Set equipped with a polymorphic operation

mapT : ∀(A,B : Set) ,(A → B)→ TA → TB

satisfying the following two equations:

mapT idA = idTA (A.1)

mapT g ·mapT f = mapT (g · f) (A.2)

Definition A.2. A natural transformation φ : F → G between functors F and G is a polymorphic function

φ : ∀(A : Set) ,FA → GA

satisfying the follow equation for all f : A → B:

φ ·mapF f = mapG f ·φ (A.3)

In the notation, functors are depicted as wires:

FF

The composition G ·F of two functors is depicted by putting them next to each other (note that our
notation places the outer functor at the top):

FF

GG

https://doi.org/https://doi.org/10.1016/j.entcs.2008.05.029
https://www.sciencedirect.com/science/article/pii/S1571066108003435
https://doi.org/10.1145/2103621.2103709

16 Syntax Monads for the Working Metatheorist

Given a particular set A, the object FA can be depicted as shown. (Strictly speaking, we embed the object
into EndSet as a constant functor.)

FF

AA

A natural transformation φ : G ⇒ F is depicted as a node along the wire:

FG φ

Using the embedding mentioned previously, we can also depict ordinary functions f : A → B as boxes
in the same way. (Strictly speaking we view the function as a natural transformation between constant
functors.) Given a function f : A → B, the function map f is drawn as shown:

FF

AB f

The laws of functors are absorbed into the string-diagrammatic notation. For both (A.1) and (A.2),
both sides of the equality are depicted exactly the same.

FF

AA
mapT idA = idTA

F F

A Cf
B

g mapT g ·mapT f = mapT (g · f)

Similarly, the defining equation of naturality (Equation (A.3)) is manifest in the fact that boxes slide
along wires like beads along a string.

FG

AB f

φ

=
FG

AB f

φ

mapG f ·φ = φ ·mapF f (A.4)

The identity functor 1 is not explicitly depicted in the notation. As a special case, natural transfor-
mations from the identity functor are depicted as boxes that are not connected to an input wire.

G φ

Likewise, transformations to the identity functor are drawn as “terminal” boxes.

Fφ

A.1 Monads

For review and to fix notation, we offer a string-diagrammatic proof that all monads give rise to Kleisli-
presented monads. To further cut down on syntactic noise, owing to our frequent use of the monad
operations and other special operations later, we depict monads with a special notation. The wire repre-
senting a monad T is drawn in blue, and its operations are depicted as blue circles rather than labelled
boxes. Labels on the wires disambiguate these operations for readers without the benefit of reading this
manuscript in full color.

L. Dunn, V. Tannen & S. Zdancewic 17

Definition A.3. A monad is a functor T : Set → Set that forms a monoid in the category of endofunctors.
That is, it is equipped with a unit and multiplication operation

retT : 1⇒ T joinT : T T ⇒ T

that make the following diagrams commute.

T T T

T

retT

join

Left identity

T T T

T

T ret

join

Right identity

T T T T T

T T T

joinT

T join join
join

Associativity
String-diagrammatically, the monoid operations are depicted as follows:

T

ret : ∀(A : Set) , A → TA
T

T
T

join : ∀(A : Set) , T(TA)→ TA

The monoid laws take on the following form:

TTT
T

= joinA · retTA = idTA (A.5)

TTT
T

= joinA ·map (retA) = idTA (A.6)

T

T

T

T

T

T

T

T= joinT
A · joinT

TA = joinT
A ·mapT (joinT

A
)

(A.7)

Lemma A.4 (Proof of Lemma 2.3). Every monad gives rise to a Kleisli-presented monad.

Proof. The operation ret is the same to both presentations, and bind is defined

T
T

f
BA

bindT
A,Bf

de f
= joinT

B ·mapT
A,B f

Proof of (2.1).

T

AA

18 Syntax Monads for the Working Metatheorist

=
T T

AA
Apply the monad right unit law (A.6).

Proof of (2.2).

T
T

f
BA

=
T

f
BA

Apply the monad left unit law (A.5).

Proof of (2.3).

T

f
A

T

g
C

=

T

f
A

T

g
C

Bend wires.

=

T

f
A

T

g
C

Apply monad associativity (A.7).

Note that a proof in the other direction (that a Kleisli-presented monad gives rise to a monad) must
be given without the aid of string diagrams: to employ the notation requires already knowing that the
wires are functors and the morphisms are natural transformations—but in the other direction these are
among the things to be shown.

B The category DecW

Let a monoid ⟨W, ·,1W ⟩ be given.

B.1 The Writer bimonad

The Writer bimonad is defined from the following four natural transformations:

extr : ∀(A : Set) ,W ×A → A

dup : ∀(A : Set) ,W ×A →W × (W ×A)

ret : ∀(A : Set) ,A →W ×A

join : ∀(A : Set) ,W × (W ×A)→W ×A

We depict these as red wires with the following shapes:

L. Dunn, V. Tannen & S. Zdancewic 19

W×

retW×

W×

extrW×

W×

W×
W×

joinW×

W×

W×
W×

dupW×

Figure 10: Writer operations

The duplication comonoid on W induces a comonad structure, while the monoid structure induces a
monad. We have the following monad and comonad laws:

W×

=W×

W×

W×

W×

W×

W×
W×

(B.1)

Writer associativity

W×

= W×

W×

W×

W×

W×

W×
W×

(B.2)

Writer coassociativity

W×

W×

W× = W× =
W×

W× (B.3)

Writer monad unit laws

W×

W×

W×=W×=
W×

W× (B.4)

Writer comonad counit laws

Additionally, the monad and comonad are related by four laws.

• First, a butterfly law depicted as such:

=
W×

W×W×

W×

W×

W×

W×

W×

(B.5)

Here, the crossing of wires indicates the tensorial strength operation

st : ∀(A : Set) ,W × (W ×A)→W × (W ×A)

20 Syntax Monads for the Working Metatheorist

stA(w1,(w2,a)) = (w2,(w1,a))

The butterfly law is an equivalence between two natural transformations of type W ×W ⇒W ×W .
Let some (w1,w2) be given. On the left of (B.5), we multiply to obtain w1 ·w2, then duplicate to
obtain

(w1 ·w2,w1 ·w2).

On the right side, we first duplicate pointwise to obtain (w1,w1,w2,w2), swap the middle compo-
nents to obtain (w1,w2,w1,w2), then multiply the left and right pairs separately to obtain

(w1 ·w2,w1 ·w2).

• Second, we have a cup law.

W×

W×
=

W×

W×
(B.6)

This law states that duplicating 1W is the same as having two copies of 1W .

• Third, we have a cap law.

W×

W×
=

W×

W×
(B.7)

This law states that deleting two values is the same as adding them, then deleting the result.

• Finally, we have a baton law.

= (B.8)

This law states that pairing a value with 1W , then deleting it, is the same as doing nothing.

In this section, let W be a monoid. For our applications, W is ordinarily the free monoid listB, or
lists of binder annotations.

B.2 Decorated functors

Definition B.1. A functor T : Set → Set decorated by W is a right coalgebra of the writer bimonad as
an object of EndSet. Explicitly, T comes equipped with a natural transformation

dec : T ⇒ T (W ×−)

subject to the following commutativity conditions.

T T (W ×−)

T

dec

T extrW×

Counit law

T T (W ×−)

T (W ×−) T (W × (W ×−))

dec

dec T dupW×

dec(W×)

Coassociativity

L. Dunn, V. Tannen & S. Zdancewic 21

String-diagrammatically, the decoration operation is depicted as follows.

T
T

W×

decT : ∀(A : Set) ,TA → T (W ×A)

The counit and co-associativity law take on the following shapes:

T T=
T

T mapTextrW×
A ·decA = idTA (B.9)

=
T

T
W×

T

T

W×

W×

W×

decW×A ·decA = mapTdupW×
A ·decA (B.10)

Definition B.2. A decoration-preserving morphism φ : F ⇒ G between decorated functors is a natural
transformation that commutes with decorations.

F G

F(W ×−) G(W ×−)

φ

decF decG

φ(W×)

Diagrammatically, a decoration-preserving morphism is a natural transformation that can slide past
the decoration operation on the T wire.

φT1

T2

W×

φ

T1

T2

W×
=

decT2
A ·φA = φW×A ·decT1

A (B.11)

Definition B.3. Given any functor T , the null decoration is defined as the one pairing every element with
the monoid unit.

decnullT

W×

T
de f
≡

T

W×

T

(B.12)

For the previous definition to be legitimiate, we must validate the counit and coassociativity laws.

• Proof of counit law (B.9).

T

T

decnull

22 Syntax Monads for the Working Metatheorist

=

TT

Definition of null decoration.

=

TT

Apply the baton law (B.8).

• Proof of coassociativity law (B.10).

decnullT

T

W×

W×

=

W×

W×

TT

Definition of null decoration.

=
W×

W×

TT

Apply the cup law (B.6).

=

W×

decnull

T

T

W×decnull Definition of null decoration.

Lemma B.4. The identity decorated functor is the identity functor paired with the null decoration.

1

W×

1 de f
≡

1

W×

1

(B.13)

Proof. That this definition gives a decorated functor was shown above.

Lemma B.5. Given decorated functors T2 and T1, the composite decoration on functor T2 ·T1 is defined

T2 ·T1

W×

T2 ·T1 de f
≡

T2

T1

W×

T1

T2

(B.14)

L. Dunn, V. Tannen & S. Zdancewic 23

Proof. We must validate that (B.14) defines a valid decoration on T2T1.

• Proof of counit law (B.9).

T1

T2

T1

T2

=
T1

T2

T1

T2

Apply the cap law (B.7).

=
T1

T2

T1

T2

Pull the unit across T1.

= T1

T2

T1

T2

Apply the counit law twice (B.9).

• Proof of coassociativity law (B.10).

T1

T2

W×

W×

T1

T2

=

T2

T1

T2

T1

W×

W×

Apply the butterfly law (B.5).

=

T2

T1

T2

T1

W×

W×

Pull the comultiplication over T2.

= T1

T2

T1

T2

W×

W×

Reassociate the decoration twice (B.10).

24 Syntax Monads for the Working Metatheorist

=

T2

T1

T2

T1

W×

W×
Bend strings.

Lemma B.6. There is a strict monoidal category DecW from the following data:

• Objects are endofuntors F : Set → Set paired with a decoration.

• Morphisms are natural transformations F ⇒ G that commute with the decorations of F and G.

• The identity is the identity functor paired with the null decoration.

• Tensor product is given by composition, with decorations composed as in Lemma B.5.

Proof.

• The decoration for T1 is the same decoration operation as on T itself.

T

1

T

1

W×

=

T
T

W×
Expand the definition of decoration on 1.

=
T

T

W× Apply the counit law.

• The decoration for 1T is the same decoration operation as on T itself.

T

1

T

1

W×

= T
T

W×
Expand the definition of decoration on 1.

= T
T

W×
Property of tensorial strength.

L. Dunn, V. Tannen & S. Zdancewic 25

= T
T

W×
Apply the counit law.

• The decoration defined on T3(T2T1) is the same as the one defined for (T3T2)T1.

T1

T2

T1

T2

T3

W×

T3

=
T1

T2

T1

T2

T3

W×

T3

Property of tensorial strength.

=
T1

T2

T1

T2

T3

W×

T3

Reassociate with the writer monad.

=
T1

T2

W×

T3

T1

T2

T3

Bend wires.

The previous lemma is related to the following well-known fact from abstract algebra: Let B be a
bialgebra, i.e. a bimonoid in the monoidal category of vector spaces under tensor product. Then the
class of all (left or right) (co-)algebras of B forms a monoidal category. See, for example, Section 4.1
of [7]. Lemma B.6 applies essentially the same idea in the category of endofunctors, which is only
slightly complicated by the fact that EndSet, unlike Vect, is not symmetric category (as FG is usually not
isomorphic to GF). However, the result goes through by using the tensorial strength where the symmetry
would ordinarily be used.

Definition B.7. A decorated monad is a monoid DecW . Explicitly, it is a monad T : Set → Set that is a
decorated functor such that the following diagrams commute.

26 Syntax Monads for the Working Metatheorist

1 T

(W ×−) T (W ×−)

retT

ret(W×) dec

retT

Decoration/unit law

T T T (W × (T (W ×−)) T (T (W × (W ×−)))

T T (W ×−)

join

dec□dec T stW,T (W×)

joinT □ joinW×

dec

Decoration/join law

These laws correspond to the follow to string diagrams.

=
W×

T

W×

T

dec ·retT = retT ·retW× (B.15)

=
T

T W×

T T

T

T

W×

decA ·joinA = joinW×A ·mapT (shiftA) ·decT(W×A) ·mapT (decA) (B.16)

The following lemma is immediate.

Lemma B.8. Let T be monad and let W a monoid. Then T (W ×−) is a monad with unit and multipli-
cation given as follows:

T

T

W×

T
W×

W×

(a) Composite monad join

W×

T

(b) Composite monad unit

Figure 17: Composite monad operations

L. Dunn, V. Tannen & S. Zdancewic 27

Lemma B.9. A decorated monad is equivalently a decorated functor and a monad whose decoration is
a monad homomorphism between T and T (W ×−).

Proof. In light of Lemma B.8, the statement is just another way of reading diagrams (B.15) and (B.16).

C The Category Trav

Definition C.1. An applicative functor, or strong5 lax monoidal functor, is a type constructor F : Set → Set
equipped with operations

pureF : ∀(A : Set) , A → FA

(⊛)F : ∀(AB : Set) , F(A → B)→ FA → FB

subject to the following equations (note that ⊛ is left-associative).

pure id⊛a = a (C.1)

pure f ⊛pure a = pure (f a) (C.2)

g⊛ (f ⊛a) = pure (·)⊛g⊛ f ⊛a (C.3)

f ⊛pure a = pure (f 7→ f a)⊛ f (C.4)

Here we have defined applicative functors in terms of the ⊛ operation, rather than an inter-definable
multiplication operation of type

(⊗)F : ∀(AB : Set) , FA×FB → F(A×B) .

The equivalence of these presentations is discussed in McBride and Paterson [26].
Definition C.2. An applicative morphism φ : F ⇒ G is a natural transformation that respects the
monoidal structure of applicative functors:

φ
(
pureFa

)
= pureGa (C.5) φ (f ⊛a) = φ f ⊛φa (C.6)

An important special case of applicative functors are constant functors mapping all sets to some
monoid M and all functions to idM. In this case, both (⊛) and (⊗) can be identified with the monoid
multiplication, while pure can be identified with identified with (the constant function returning) the
monoid identity element. The applicative functor laws follow from the monoid laws. Unsurprisingly,
morphisms between constant applicative functors are simply monoid homomorphisms.
Definition C.3. A traversable functor T : Set → Set has a distributive law dist : T F → FT over applica-
tive functors, natural in F and respecting the monoidal structure of applicative functors. That is, for

all applicative functors F1,F2 and applicative morphisms F1
φ
=⇒ F2, we have the following commutative

diagrams.

T T
idT

dist1

Unitarity

T FG FT G

FGT

distF ·G

distF G

FdistG

Linearity

T F FT

T G GT

distTF

T φ φT

distTG

Naturality

5In the sense of tensorial strengths.

28 Syntax Monads for the Working Metatheorist

Our notation depicts applicative functors as yellow wires. The distributive law is depicted as the
ability to cross a yellow wire over a wire representing a traversable functor. (Note that we can cross F
from underneath T to over it, but we cannot usually go in the other direction.)

T
F

F
T

distT : ∀(F : Applicative)(A : Set) ,T (FA)→ F(TA)

The laws of traversals have the following string-diagrammatic presentation. The first says that cross-
ing the “invisible” identity wire has no effect on T . For applicative functors F and G, the second law
states that there is no distinction between considering their composition FG as an applicative functor and
crossing this functor over T , or crossing the F and G wires over T individually in two steps. The third
law is merely a naturality requirement allowing us to slide applicative morphisms along crossed wires.

=T T
1

1

TT

dist1,A = idTA (C.7)

=T T
F

G

F
G

F
G

F
G

T T

mapF (distG,A
)
·distF,GA = distF·G,A (C.8)

=
φ

T
F

G
T

φ

T
F

G
T

distG,A ·mapT (φA) = φTA ·distF,A (C.9)

Definition C.4. A traversable morphism ψ : T1 ⇒ T2 is a natural transformation that commutes with
distribution.

T1F FT1

T2F FT2

distT1 ,F

ψF Fψ

distT2 ,F

L. Dunn, V. Tannen & S. Zdancewic 29

ψ ψ=T1

F

F

T2 T1

F

F

T2

distT2
F,A ·ψFA = mapF (ψA) ·distT1

F,A (C.10)

Lemma C.5. The identity functor is equipped with a unique traversal that is just the identity function.

1 1

F

F
de f
≡

FF

Proof. All equations involved are trivial.

Lemma C.6. . Traversable functors are closed under composition by the following construction that
distributes F over T2 ◦T1 by crossing T1 and T1 individually:

T2 ·T1

F

F

T2 ·T1

de f
≡

T1

F

F

T1

T2 T2

Proof.
We must validate that (C.7)–(C.9) are satisfied.

• Distribute over the identity functor

T1

F

F

T1

T2 T2

=
T1T1

T2T2

Apply the identity law.

• Proof of composition law Distribute over the composition of two applicative functors

T1

F

F

T1

T2 T2

G

G

30 Syntax Monads for the Working Metatheorist

=

T1

F

F

T1

T2 T2

G

G

Bend wires.

=

T1

F

F

T1

T2 T2

G

G

Apply the compositionality law (C.8).

Lemma C.7 (Category Trav). There is a strict monoidal category Trav from the following data:

• Objects are endofuntors T : Set → Set paired with a traversal.

• Morphisms are natural transformations T1 ⇒ T2 that commute with traversals.

• The identity is the identity functor paired with its unique traversal.

• Tensor product is given by composition, with traversals composed as in Lemma C.6.

Proof. This mostly comes down to the previous verification that the identity functor is traversable and
that such functors are closed under composition. To form a category, one must check the easy fact that
traversable morphisms are also closed under composition. The monoidal structure of this category is
inherited from EndSet, after verifying the trivial equations stating that the composite distributive law in
Lemma C.6 is associative and respects composition with the identity functor.

Definition C.8. A traversable monad is a monoid in Trav. Explicitly, the requirement is that T is both a
monad and a traversable functor such that the following diagrams commute for all applicative F.

F T F

FT
Fret

retF

dist

T T F T FT FT T

T F FT

µF

T dist distT

Fµ

dist

Besides stipulating that T is both a monad and a traversable functor, the force of Definition C.8 is
that ret and join are required to satisfy (C.9). These laws have the following depictions:

L. Dunn, V. Tannen & S. Zdancewic 31

=
F

T

F

T

F

F

distF,A ·retFA = mapF
(
retT

A
)

(C.11)

=T

F

T
T

T

F

T

F
T

F

distF,A ·joinFA = mapF (joinA) ·distF,TA ·mapT (distF,A) (C.12)

D The Category DecTravW

Definition D.1. A decorated traversable functor is decorated and traversable functor such that the fol-
lowing diagram commutes.

T F FT

T (W ×F−) T (F(W ×−))) FT (W ×−))

decF

distF

Fdec
T distW×

F distTF (W×)

This has the following string-diagrammatic depiction.

=T

F

T

W

F

T

F

T

W

F

mapF (decA) ·distF,A = distF,W×A ·mapT
(
distW×F,A

)
·decT

FA (D.1)

Lemma D.2. The identity functor is decorated-traversable.

Proof. We verify that the identity respects (D.1).

1

F

1

W

F

32 Syntax Monads for the Working Metatheorist

=

F
W

F

Definition of decoration on 1.

=

F
W

F

Property of tensorial strength.

= 1

F

1

W

F

Definition of decoration on 1.

Lemma D.3. Decorated traversable functors are closed under composition.

Proof. We verify that composition respects (D.1).

T1

T2

W

T1

T2

F

F

=
T1

T2

W

T1

T2

F

F

Pull the decorations past F (D.1)

=
T1

T2

W

T1

T2

F

F

Property of tensorial strength

Lemma D.4. There is a strict monoidal category DecTravW from the following data:

• Objects are endofuntors T : Set → Set paired with a traversal and a decoration.

• Morphisms are natural transformations T1 ⇒ T2 that commute with traversals and decorations.

• The identity is the identity functor paired with its unique traversal and the null decoration.

• Tensor product is given by composition, with traversals and decorations composed as described
above.

L. Dunn, V. Tannen & S. Zdancewic 33

Proof. We verified that the identity functor is decorated-traversable and that decorated-traversable func-
tors are closed under composition. The remaining properties are already verified as part of Lemmas B.6
and C.7.

D.1 Decorated traversable monads

Definition D.5. A decorated traversable monad is a monoid in DecTravW .

The force of Definition D.5 can be seen in parts. First, a DTM T is an object of DecTravW , hence it
is decorated (Definition B.1) and traversable (Definition C.3) and the decoration and traversal commute
according to (D.1). Second, the monoid operations ret and join commute with decoration in the sense
of (B.11), for the decoration operations defined in Lemmas B.4 and B.5. Finally, the monoid operations
commute with the traversal in the sense of (C.9), according to the traversals defined in Lemmas C.5 and
C.6.

In total, a DTM is equipped with 5 operations:

map (A B : Set) : (A → B)→ TA → TB
ret (A : Set) : A → TA

join (A : Set) : T(TA)→ TA
dec (A : Set) : TA → T(W×A)

dist (Applicative F)(A : Set) : T(FA)→ F (TA)

TT

A Bf

mapf

T

ret
T

T
T

join

T
T

W×

dec

T
F

F
T

dist

Figure 22: DTM operations

These operations are subject to a total of 19 equations depicted in Figures 23 and 24.

34 Syntax Monads for the Working Metatheorist

Functor laws
mapT idA = idTA

mapT g ·mapT f= mapT (g · f)

Naturality

retT
B ·f= mapT f ·retT

A

joinT
B ·mapT

(
mapT f

)
=
(
mapT f

)
·joinT

A

decT
B ·mapT f = mapT

(
mapW× f

)
·decT

A

distT
B ·mapT

(
mapF f

)
= mapF

(
mapT f

)
·distT

A

Monad laws

joinT
A ·retT

TA = idTA

joinT
A ·mapT

(
retT

A
)
= idTA

joinT
A ·joinT

TA = joinT
A ·mapT

(
joinT

A
)

Decoration laws
mapT

(
extractW×

)
·decT

A = idTA

decT
A ·decT

A = mapT
(
dupW×A

)
·decT

A

Decoration/monad coherence
decT

A ·retT
A = retT

A ·retW×

decT
A ·joinT

A = joinT
W×A ·mapT

(
shiftT

A
)
·decT

T(W×A) ·map
T
(
decT

A
)

Traversal laws

distT
I,A = idTA

distT
F·G,A = mapF

(
distT

G,A

)
·distT

F,GA

φA ·distT
F,A = distT

G,A ·mapT (φA)

Traversal/monad coherence
distT

F,A ·retT
FA = mapF

(
retT

A
)

distT
F,A ·joinT

FA = mapF
(
joinT

A
)
·distT

F,TA ·mapT
(
distT

F,A

)
Decoration/traversal coherence mapF

(
decT

A
)
·distT

F,A = distT
F,W×A ·mapT

(
distW×F,A

)
·decT

FA

Figure 23: Equational presentation of the axioms of DTMs

L. Dunn, V. Tannen & S. Zdancewic 35

T

T

T

T

T

T

T

T=

(a) Monad associativity

TTT
T

= = T
T

(b) Monad unit laws

T T=
T

T

(c) Decorated functor identity

=
T

T
W×

T

T

W×

W×

W×

(d) Decorated functor associativity

=
W×

T

W×

T

(e) Decorated monad unit law

=
T

T W×

T T

T

T

W×

(f) Decorated monad butterfly

=T T
1

1

TT

(g) Traversable functor identity law

=T T
F

G

F
G

F
G

F
G

T T

(h) Traversable functor composition law

=
φ

T
F

G
T

φ

T
F

G
T

(i) Applicative homomorphism law

=
F

T

F

T

F

F

(j) Traversable monad unit law

=T

F

T
T

T

F

T

F
T

F

(k) Traversable monad join law

=T

F

T

W

F

T

F

T

W

F

(l) Decorated traversable functor law

Figure 24: String diagram depictions of the axioms of DTMs

36 Syntax Monads for the Working Metatheorist

D.2 Proof of Kleisli Presentation

Lemma D.6. Every DTM gives rise to a Kleisli-presented DTM according to the following definition of
binddt.

A B

T
f

T

F

binddtF f = mapF (join) ·distF ·map f ·dec

Proof. Proof of Equation (4.1):

A B
f

T

F

=

A B
f

T

F

Apply the decoration cup law (B.15).

=

A B
f

T

F

Pull the unit across F (C.11).

=
A B

f T

F

Apply the left monad unit law (A.5).

Proof of Equation (4.2):

A A

T T
1

1

=

A A

T T
1

1

Apply the unit and counit laws (B.9) (A.6).

L. Dunn, V. Tannen & S. Zdancewic 37

=

A A

T T Apply traversal unitary law (C.7).

Proof of Equation (4.3):

A
B

T
f

C
g

T

G

F

=

A

T
f

C
g

T

G

F

Apply the butterfly law (B.16).

=

A

T
f

C
g

T

G

F

Drag operations past distributions (C.12) (D.1).

=

A

T

f
C

g

T

G

F

Apply (co)associativity (A.7) (B.10).

=

A

T

f
C

g

T

G

F

Apply traversal composition law (C.8).

38 Syntax Monads for the Working Metatheorist

Proof of Equation (4.4):

A B

T

f

T
φ

G

F

=

A B

T

f

T

Gφ

F Slide the applicative morphism (C.9).

	1 Introduction
	1.1 Layout

	2 First-order Representations of Variable Binding
	2.1 Variable Encodings

	3 Decorated Traversable Functors
	3.1 Decorations
	3.2 Traversals
	3.3 Decorated Traversable Functors

	4 Kleisli Representation for DTMs
	4.1 Substitution Metatheory

	5 Related Work
	6 Conclusion and Future Work
	A String Diagrams for Endofunctor Categories
	A.1 Monads

	B The category DecW
	B.1 The Writer bimonad
	B.2 Decorated functors

	C The Category Trav
	D The Category DecTravW
	D.1 Decorated traversable monads
	D.2 Proof of Kleisli Presentation

