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Recently, there has been renewed interest in the theory and applications of de Paiva’s dialectica cat-
egories and their relationship to the category of polynomial functors. Both fall under the theory of
generalized polynomial categories, which are free coproduct completions of free product comple-
tions of (monoidal) categories. Here we extend known monoidal structures on polynomial functors
and dialectica categories to generalized polynomial categories. We highlight one such monoidal
structure, an asymmetric operation generalizing composition of polynomial functors, and show that
comonoids with respect to this structure correspond to categories enriched over a related free coprod-
uct completion. Applications include modeling compositional bounds on dynamical systems.

1 Introduction

Categories whose morphisms (often referred to as lenses) model bidirectional data flows are ubiquitous
in applied category theory, with applications to such diverse fields as logic [Pai88; TSP22], database
management [JRW12; GJ12; AU17], game theory [Hed17; Atk+21; Cap22], dynamical and distributed
systems [Spi20; Mye21; LLP22; Smi22; SS22a], and machine learning [FJ19; FST19; Cru+22]. Moss
observed that we can obtain a general class of such categories through free product and coproduct
completions—universal constructions with convenient concrete characterizations [Mos22]. That is, start-
ing from a category C, we can form a larger category ΣΠC whose objects are formal coproducts of
products of objects in C, or polynomials in C for short; then the morphisms between these coproducts
of products naturally have both a forward component and a backward component in addition to subsum-
ing the original morphisms from C. Examples of such generalized polynomial categories include the
category Poly of polynomial functors, which may be used to model interaction protocols [NS23]; and
a category whose homogeneous polynomials span a full subcategory equivalent to de Paiva’s dialectica
category on sets, a model for intuitionistic linear logic [Pai88]. We review the construction of ΣΠC and
exhibit these examples in Section 2.

The utility of these examples lies not only in their bidirectional morphisms but also in the assorted
ways in which such morphisms can be combined via monoidal products. It turns out that a monoidal
structure on C may be lifted to a monoidal structure on ΣΠC in multiple ways. We present two such
ways in Section 3—one classical, given by an iterated Day convolution (as in [Day70]); and one we
believe is new in the literature, generalizing functor composition in Poly.

Many applications of polynomial functors (as in [NS23]) depend on the following remarkable result
by Ahman and Uustalu [AU16; AU17]: the category of comonoids in Poly with respect to the compo-
sition product is equivalent to the category whose objects are small categories and whose morphisms
are cofunctors, as introduced by Aguiar [Agu97]. Our main result, Theorem 4.3, is that Ahman and
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Uustalu’s statement naturally generalizes to ΣΠC. By replacing Poly with ΣΠC equipped with our gen-
eralized composition product, comonoids become small enriched categories—whose base of enrichment
is ΣCop with Day convolution. Then morphisms of these comonoids generalize cofunctors to the enriched
setting in a way that coincides exactly with Clarke and Di Meglio’s recent definition of enriched cofunc-
tors [CM22]. We review the necessary definitions before presenting this correspondence in Section 4 via
an explicit construction.

In Section 5, we take C to be the extended nonnegative reals to demonstrate how morphisms in ΣΠC
may be used to model dynamical systems with boundedness conditions preserved by the generalized
composition product. Such morphisms can be lifted to enriched cofunctors via a right adjoint to the
forgetful functor from comonoids to their underlying objects; we review a few examples before stating
the general result as Theorem 5.6. Finally, we suggest directions for future work in Section 6.
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2 Free (co)product completions and polynomial categories

We begin by recalling two constructions on a category C: the free product completion and its dual, the
free coproduct completion. Here we follow Moss [Mos22]; we omit proofs for standard results.

Definition 2.1. The free product completion of a category C is the category ΠC, where
• an object, denoted ∏i∈I ci, consists of

– a set I;
– for each i ∈ I, an object ci in C;

• a morphism ϕ : ∏i∈I ci → ∏ j∈J d j consists of
– a function ϕ♯ : J → I;
– for each j ∈ J, a morphism ϕ j : cϕ♯ j → d j in C. ♢

The category C embeds into ΠC as a full subcategory via c 7→ Π∗∈1c, where 1 := {∗} is the singleton
set. As implied by the name “free product completion,” the category ΠC equipped with the embedding
C ↪→ ΠC is universal among categories D with small products equipped with functors C → D.

We may alternatively characterize ΠC as follows, using the fact that [C,Set]op equipped with the
Yoneda embedding C ↪→ [C,Set]op is the free limit completion of C and restricting to products.

Proposition 2.2. The category ΠC is equivalent to the full subcategory of [C,Set]op spanned by products
of representable functors.

Definition 2.3. The free coproduct completion of a category C is the category ΣC, where
• an object, denoted ∑i∈I ci, consists of
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– a set I;
– for each i ∈ I, an object ci in C;

• a morphism ϕ : ∑i∈I ci → ∑ j∈J d j consists of
– a function ϕ : I → J;
– for each i ∈ I, a morphism ϕi : ci → dϕi in C. ♢

There is a fully faithful functor C ↪→ ΣC sending c 7→ ∑∗∈1 c. Comparing the definitions, we find that
(ΣCop)op ≈ ΠC; in particular, dualizing Proposition 2.2 yields the following.

Proposition 2.4. The category ΣC is equivalent to the full subcategory of [Cop,Set] spanned by coprod-
ucts of representable functors.

The category ΣC equipped with the embedding C ↪→ ΣC is universal among categories D with small
coproducts equipped with functors C → D; in particular ΣC has small coproducts. As for products in ΣC,
we have the following proposition.

Proposition 2.5. If C has all small products, then ΣC has all small products given by a distributive law

∏
i∈I

∑
j∈Ji

ci, j ∼= ∑
j∈∏

i∈I
Ji

∏
i∈I

ci, ji
. (1)

Proof. Apply Proposition 2.4. Since products of presheaves are computed pointwise, products of repre-
sentables in [Cop,Set] are representable, and Eq. (1) holds in Set, the conclusion follows.

If we freely add products, then freely add coproducts, we obtain the central construction of this paper.

Definition 2.6. The category ΣΠC of polynomials in C is the category where
• an object, denoted ∑i∈I ∏a∈Ai ci,a, consists of

– a set I of positions;
– for each i ∈ I, a set Ai of directions at i;
– a doubly-indexed family (ci,a)i∈I,a∈A of objects of C, called predicates;

• a morphism ϕ : ∑i∈I ∏a∈Ai ci,a → ∑ j∈J ∏b∈B j d j,b consists of
– an on-positions function ϕ : I → J;
– for each i ∈ I, an on-directions function ϕ

♯
i : Bϕi → Ai;

– for each i ∈ I and b ∈ Bϕi, an on-predicates map ϕi,b : ci,ϕ♯
i b → dϕi,b. ♢

Unraveling the definitions, we see that ΣΠC is indeed the free coproduct completion of the free
product completion of C. The following characterization of the hom-sets of ΣΠC is immediate.

Proposition 2.7. The hom-sets of ΣΠC are given by

ΣΠC
(
∑
i∈I

∏
a∈Ai

ci,a,∑
j∈J

∏
b∈B j

d j,b

)
∼= ∏

i∈I
∑
j∈J

∏
b∈B j

∑
a∈Ai

C(ci,a,d j,b).

Even though we added products before we added coproducts, Proposition 2.5 ensures that ΣΠC has
all products in addition to having all coproducts and that these products distribute over coproducts.

The construction of ΣΠC generalizes two particularly versatile categories: the category of polynomial
functors and one of de Paiva’s dialectica categories [Pai88]. In the remainder of this section, we review
each of these categories in turn, observing how they arise from categories of polynomials.
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The category of polynomial functors

We consider ΣΠC a generalized polynomial category because it generalizes the category Poly of poly-
nomial functors, which we recall below.

Definition 2.8. A polynomial functor p : Set → Set is a coproduct of representable functors. That is,
there exist I ∈ Set and p[i] ∈ Set for each i ∈ I such that, for yp[i] := Set(p[i],−),

p ∼= ∑
i∈I

yp[i].

We call the elements of p(1)∼= I the positions of p and the elements of p[i] the directions of p at i.1 We
denote the category of polynomial functors and the natural transformations between them by Poly. ♢

It turns out that Poly is the category of polynomials in the terminal category 1, consisting of one
object and no non-identity morphisms.

Proposition 2.9. Poly ≈ ΣΠ1.

Proof. By definition, Π1 ≈ Setop. Then Proposition 2.4 implies that ΣΠ1 is the full subcategory of
[Set,Set] spanned by coproducts of representables.

Viewing Poly as ΣΠ1, we can characterize the morphisms of Poly as follows.

Example 2.10. A morphism ϕ : p → q in Poly ≈ ΣΠ1 consists of
• an on-positions function ϕ1 : p(1)→ q(1);2

• for each i ∈ p(1), an on-directions function ϕ
♯
i : q[ϕi]→ p[i]. ♢

The dialectica category on sets

Rather than working with the entire category of polynomials in C, it is sometimes easier to work with
one of its full subcategories, which we define below.

Definition 2.11. A polynomial in C is homogeneous3 if it can be written in the form

∑
i∈I

∏
a∈A

ui,a,

where the set A does not depend on i ∈ I. We let Hmg(C) denote the full subcategory of ΣΠC spanned
by homogeneous polynomials. ♢

As an example, let 2 denote the walking arrow category, which has two objects ⊥ and ⊤ and one
non-identity arrow ⊥→⊤.

Example 2.12. In the category Hmg(2),
• an object, denoted ∑i∈I ∏a∈A ci,a, consists of

– two sets, I and A;
– for each (i,a) ∈ I ×A, an object ci,a ∈ {⊥,⊤};

1The “positions” and “directions” terminology for Poly was introduced by Spivak for polynomial functors [Spi20].
2We use a subscript 1 for the on-positions function as it is the 1-component of ϕ as a natural transformation [NS23].
3The terminology comes from algebra, where a homogeneous polynomial is one whose summands all have the same degree.
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• a morphism ϕ : ∑i∈I ∏a∈A ci,a → ∑ j∈J ∏b∈B d j,b consists of
– a function ϕ : I → J;
– a function ϕ♯ : I ×B → A; such that
– for each i ∈ I and b ∈ B, if ci,ϕ♯(i,b) =⊤, then dϕi,b =⊤. ♢

This is precisely de Paiva’s original dialectica category on Set [Pai88].

Proposition 2.13. Hmg(2)≈ Dial(Set).

3 Monoidal structures on polynomial categories

Most of the applications of Poly and Dial(Set) rely on their monoidal structures; in this section, we will
generalize such structures to ΣΠC. Throughout, let (C,e, ·) be a monoidal category with unit e ∈ C and
product · : C×C → C. The monoidal structure on C then induces monoidal structures on ΣΠC.

3.1 The parallel product

A monoidal product · on C always induces a monoidal product ⊙ on the free colimit completion [Cop,Set]
of C: the Day convolution, which agrees with · on the full subcategory C ↪→ [Cop,Set].

Proposition 3.1. The Day convolution ⊙ on [Cop,Set] restricts to a monoidal product on the free co-
product completion ΣC of C, yielding a distributive monoidal category (ΣC,e,⊙).

Proof. The Day convolution [Day70] is a coend construction and thus preserves coproducts. Hence ΣC
is closed under ⊙, and ⊙ distributes over coproducts:(

∑
i∈I

ci

)
⊙
(

∑
j∈J

d j

)
∼= ∑

i∈I
∑
j∈J

(ci ⊙d j)∼= ∑
(i, j)∈I×J

(ci ·d j).

The formula above tells us how to evaluate ⊙ on arbitrary objects in ΣC. We dualize this construction
to obtain an analogous monoidal product on ΠC ≈ (ΣCop)op.

Proposition 3.2. There is a monoidal structure on ΠC with unit e whose monoidal product ⊚ is given by(
∏
a∈A

ca

)
⊚
(

∏
b∈B

db

)
∼= ∏

(a,b)∈A×B
(ca ·db).

Thus, to obtain a monoidal structure on ΣΠC, we first lift the monoidal structure on C to ΠC, then
lift the monoidal structure on ΠC to ΣΠC.

Proposition 3.3. There is a monoidal structure on ΣΠC with unit e whose monoidal product, which we
call the parallel product and denote by ⊗, is given by(

∑
i∈I

∏
a∈Ai

ci,a

)
⊗
(

∑
j∈J

∏
b∈B j

d j,b

)
∼= ∑

i∈I
∑
j∈J

∏
a∈Ai

∏
b∈B j

(ci,a ·d j,b).

Proof. Apply Proposition 3.2 on (C,e,⊙) to obtain (ΠC,e,⊚), then apply Proposition 3.1 on (ΠC,e,⊚)

to obtain (ΣΠC,e,⊗).
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Example 3.4. To justify our use of the name “parallel product,” we consider an example. Let C := 1,
whose unique object we call y. There is a unique monoidal structure on C given by y · y = y.

Following [NS23], in ΣΠ1 ≈ Poly, an object ∑i∈I ∏a∈Ai y, which we denote by ∑i∈I y
Ai for short, can

be thought of as an interface, with a number of possible positions from I it could expose and, according
to the position i ∈ I it is currently exposing, a number of possible directions from Ai it could receive.
A morphism ϕ : ∑i∈I y

Ai → ∑i′∈I′ y
A′

i′ in Poly can then be viewed as an interaction protocol between
interfaces. On positions, ϕ converts any position i ∈ I that the domain could expose to a position ϕi ∈ I′

for the codomain to expose; then on directions, ϕ converts any direction a′ ∈ A′
ϕi that the codomain could

receive to a direction ϕ
♯
i a′ ∈ Ai for the domain to receive.

Then taking the parallel product of two such interaction protocols yields a single interaction protocol
that models the two original protocols simultaneously—or in parallel. More concretely, given interaction
protocols ϕ : ∑i∈I y

Ai → ∑i′∈I′ y
A′

i′ and ψ : ∑ j∈J y
B j → ∑ j′∈J′ y

B′
j′ , their parallel product ϕ ⊗ψ converts

a pair of positions (i, j) ∈ I × J from its domain(
∑
i∈I

yAi
)
⊗
(

∑
j∈J

yB j
)
∼= ∑

(i, j)∈I×J
(y ·y)Ai×B j ∼= ∑

(i, j)∈I×J
yAi×B j

to the pair of positions (ϕi,ψ j) ∈ I′× J′ from its codomain(
∑
i′∈I′

yA′
i′
)
⊗
(

∑
j′∈J′

y
B′

j′
)
∼= ∑

(i′, j′)∈I′×J′
y

A′
i′×B′

j′

by applying the on-positions functions of ϕ and ψ in parallel; then converts a pair of directions (a′,b′) ∈
A′

ϕi ×B′
ψ j from its codomain to the pair of directions (ϕ♯

i a′,ψ♯
jb

′) from its domain by applying the on-
directions functions of ϕ and ψ in parallel. ♢

3.2 The composition product

Here we introduce another monoidal structure on ΣΠC induced by the monoidal product on C.

Definition 3.5. The composition product ◁ of two objects in ΣΠC is given by(
∑
i∈I

∏
a∈Ai

ui,a

)
◁
(

∑
j∈J

∏
b∈B j

v j,b

)
:= ∑

i∈I
∏
a∈Ai

∑
j∈J

∏
b∈B j

(ui,a · v j,b). ♢

We call this the composition product as it generalizes the composition operation on polynomial func-
tors when C = 1: composing ∑i∈I ∏a∈Ai y with ∑ j∈J ∏b∈B j y yields the functor ∑i∈I ∏a∈Ai ∑ j∈J ∏b∈B j y.
Distributivity (Eq. (1)) yields the following alternate form for this product.

Lemma 3.6. The composition product can be rewritten as(
∑
i∈I

∏
a∈Ai

ui,a

)
◁
(

∑
j∈J

∏
b∈B j

v j,b

)
∼= ∑

i∈I
∑

j : Ai→J
∏
a∈Ai

∏
b∈B ja

(ui,a · v ja,b).

Proposition 3.7. There is a monoidal category (ΣΠC,e,◁).
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Proof. Routine, but we will describe the behavior of ◁ on morphisms: given

ϕ : ∑
i∈I

∏
a∈Ai

ui,a → ∑
k∈K

∏
c∈Ck

wk,c and ψ : ∑
j∈J

∏
b∈B j

v j,b → ∑
ℓ∈L

∏
d∈Dℓ

xℓ,d ,

the morphism

ϕ ◁ψ : ∑
i∈I

∑
j : Ai→J

∏
a∈Ai

∏
b∈B ja

(ui,a · v ja,b)→ ∑
k∈K

∑
ℓ : Ck→L

∏
c∈Ck

∏
d∈Dℓc

(wk,c · xℓc,d)

(whose domain and codomain we have rewritten using Lemma 3.6) consists of the following data:
• an on-positions function ϕ ◁ψ : ∑i∈I JAi → ∑k∈K LCk consisting of:

– a function I → K given by ϕ;
– for each i∈ I, a function JAi → LCϕi given by precomposing ϕ

♯
i : Cϕi → Ai and postcomposing

ψ : J → L;
• for each i ∈ I and j : Ai → J, sent to ϕi ∈ K and ψ jϕ♯

i : Cϕi → L by the on-positions function, an
on-directions function (ϕ ◁ψ)♯i, j : ∑c∈Cϕi D

ψ jϕ♯
i c → ∑a∈Ai B ja consisting of:

– a function Cϕi → Ai given by ϕ
♯
i ;

– for each c ∈Cϕi, a function D
ψ jϕ♯

i c → B jϕ♯
i c given by ψ

♯

jϕ♯
i c

;

• for each i ∈ I, j : Ai → J,c ∈Cϕi, and d ∈ D
ψ jϕ♯

i c, sent to ϕ
♯
i : Cϕi → Ai and ψ

♯

jϕ♯
i c

: D
ψ jϕ♯

i c → B jϕ♯
i c

by the on-directions function, an on-predicates map (ϕ ◁ψ)i, j,c,d : ui,ϕ♯
i c · v j′,ψ♯

j′d
→ wϕi,c · xψ j′,d

(here j′ := jϕ♯
i c) given by ϕi,c ·ψ j′,d .

4 Composition comonoids as enriched categories

Our main result concerns the category of comonoids in (ΣΠC,e,◁). We will show that it is equivalent to
a category whose objects are enriched categories and whose morphisms are enriched cofunctors. While
the former may be more familiar than the latter, we review both these definitions here.

Recall the definition of a category enriched over a monoidal category from Kelly [Kel82]. We restate
it here for the special case where the enriching category is (ΣCop,e,⊙).

Definition 4.1. A small (ΣCop,e,⊙)-enriched category A, with ⊙ defined as in Proposition 3.1, consists
of the following data:

• a set ObA (or just A) of objects;
• for each x,y ∈ ObA, a hom-family ∑ f : x→y | f | ∈ ΣCop consisting of:

– a set A(x,y) of morphisms, i.e. a hom-set, with f ∈A(x,y) denoted by f : x → y;
– for each morphism f : x → y, a weight | f | ∈ C;

• for each x ∈ ObA, a morphism e → ∑ f : x→x | f | in ΣCop consisting of:
– an identity morphism idx : x → x;
– an identity map ηx : | idx| → e from C;

• for each x,y,z ∈ ObA, a morphism

∑
f : x→y

∑
g : y→z

(| f | · |g|)→ ∑
h : x→z

|h|

in ΣCop consisting of, for each f : x → y and g : y → z:
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– a composite morphism g f : x → z;
– a composite map µ f ,g : |g f | → | f | · |g| from C.

Here w,x,y,z ∈ ObA and f : w → x, g : x → y, and h : y → z must satisfy the following:
• unitality, that f idw = f = idx f and the following diagram commutes in C (up to unitors):

| idw| · | f | | f | | f | · | idx|

| f |
ηw·| f |

µidw , f µ f ,idx

| f |·ηx

• associativity, that (hg) f = h(g f ) and the following commutes in C (up to associators):

|hg f | | f | · |hg|

|g f | · |h| | f | · |g| · |h|

µ f ,hg

µg f ,h | f |·µg,h

µ f ,g·|h|

♢

By Proposition 3.1, the monoidal category (ΣCop,e,⊙) is distributive, so there exists a notion of a
(ΣCop,e,⊙)-enriched cofunctor as introduced by Clarke and Di Meglio [CM22]. We restate the defini-
tion of an enriched cofunctor in this special case here.

Definition 4.2. A (ΣCop,e,⊙)-enriched cofunctor Φ : A ↛ B between small (ΣCop,e,⊙)-enriched
categories A and B consists of the following data:

• a function Φ : ObA → ObB;
• for each a ∈A,b ∈ B, and morphism f : Φa → b from B:

– a morphism Φ
♯
a f : a → x from A with Φx = b;

– a morphism Φa, f : |Φ♯
a f | → | f | from C.

Here a,x ∈A; b,b′ ∈ B; f : Φa → b with Φ
♯
a f : a → x; and g : b → b′ must satisfy:

• preservation of identities, that Φ
♯
a(idΦa) = ida and the following commutes in C:

| ida| | idΦa|

e
ηa

Φa,idΦa

ηΦa

• preservation of composites, that Φ
♯
a(g f ) = Φ

♯
x(g)Φ

♯
a( f ) and the following commutes in C:

|Φ♯
a(g f )| |Φ♯

a f | · |Φ♯
xg|

|g f | | f | · |g|

Φa,g f

µ
Φ
♯
a f ,Φ♯

xg

Φa, f ·Φx,g

µ f ,g

♢
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There is then a category whose objects are small (ΣCop,e,⊙)-enriched categories and whose mor-
phisms are (ΣCop,e,⊙)-enriched cofunctors. While enriched cofunctors differ from enriched functors, it
is nevertheless the case that an isomorphism in this category corresponds to our usual notion of isomor-
phism of enriched categories as defined by a pair of invertible enriched functors.

The following is a generalization of a result by Ahman and Uustalu [AU16; AU17]: that the category
of polynomial comonads is equivalent to the category of small categories and cofunctors, corresponding
to the case where C = 1 (the Set-enriched case, for Σ1op ≈ Set) in the theorem below.

Theorem 4.3. The category of comonoids in the monoidal category (ΣΠC,e,◁) is equivalent to the
category of small (ΣCop,e,⊙)-enriched categories and enriched cofunctors.

Proof. First, we describe how to construct a comonoid in (ΣΠC,e,◁) from each (ΣCop,e,⊙)-enriched
category; the inverse construction will then be evident. Given a small (ΣCop,e,⊙)-enriched category A,
define a polynomial in C with positions ObA, directions Ai := ∑ j∈AA(i, j) for i ∈ A, and predicate
|a| ∈C for i∈A and ( j,a : i→ j)∈Ai. In other words: positions are objects, directions are morphisms of
a given domain, and predicates are the morphisms’ weights. We endow this polynomial ∑i∈A ∏a : i→ |a|
(where a : i → denotes a morphism a in A with domain i and arbitrary codomain) with a comonoid
structure as follows. Its counit

ε : ∑
i∈A

∏
a : i→

|a| → e

is trivial on positions, the assignment i 7→ idi on directions, and the identity map ηi : | idi| → e on predi-
cates. Meanwhile its comultiplication

δ : ∑
i∈A

∏
a : i→

|a| →
(

∑
i∈A

∏
b : i→

|b|
)
◁
(

∑
j∈A

∏
c : j→

|c|
)
∼= ∑

i∈A
∑

j : Ai→ObA
∏

b : i→
∏

c : jb→
|b| · |c|

is the assignment i 7→ (i,cod) on positions, where cod: Ai → ObA sends each morphism a : i → j to
its codomain j; morphism composition on directions, sending b : i → and c : cod(b)→ to cb : i → ;
and the composite map µb,c : |cb| → |b| · |c| on predicates. The counitality and coassociativity of the
comonoid follow from the unitality and associativity of the enriched category, as well as the equations
cod(idi) = i and cod(cb) = cod(c). Moreover, from any comonoid we can recover its corresponding
enriched category up to isomorphism.

Next, we describe how to construct a morphism of comonoids in (ΣΠC,e,◁) from each (ΣCop,e,⊙)-
enriched cofunctor; again the inverse construction will then be evident. Given a (ΣCop,e,⊙)-enriched
cofunctor Φ : A↛B between small (ΣCop,e,⊙)-enriched categories A and B, we construct a structure-
preserving morphism

ϕ : ∑
i∈A

∏
a : i→

|a| → ∑
j∈B

∏
b : j→

|b|

in ΣΠC between the comonoids corresponding to A and B like so. On positions, set ϕi := Φi ∈ B for
i ∈A; on directions, set ϕ

♯
i b := (Φ♯

i b : i → ) in A for i ∈A and b : Φi → in B; and on predicates, set
ϕi,b := (Φi,b : |Φ♯

i b| → |b|) in C for i ∈A and b : Φi → in B. That ϕ preserves counits and comultipli-
cations follows from the fact that Φ preserves identities and composites and that Φ(cod(Φ♯

i a)) = cod(a).
Moreover, from any comonoid morphism we can recover its corresponding enriched cofunctor.
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5 Application: compositional bounds on dynamical systems

Here we give an example of how the structure of ΣΠC may be used to model open dynamical systems and
their invariants. This case study is by no means comprehensive; we seek only to hint at the possibilities
of how ΣΠC may be used.

Throughout, we let (C,e, ·) := ([0,∞]≤,0,+), the poset of nonnegative extended reals ordered by ≤
viewed as a category and endowed with the additive monoidal structure. We take the free coproduct
completion of its opposite category and endow it with a monoidal structure ⊕ given by Day convolution.
Then a (Σ[0,∞]≥,0,⊕)-enriched category is an additively weighted category [Gra06].

Definition 5.1. An additively weighted category (or weighted category) X is a small (Σ[0,∞]≥,0,⊕)-
enriched category. It thus consists of the following data:

• a set ObX of objects or points;
• for each x,y ∈ ObX, an object ∑p : x→y |p| ∈ Σ[0,∞]≥ consisting of:

– a set X(x,y) of morphisms or paths, with p ∈X(x,y) denoted by p : x → y;
– for each path p : x → y, a weight or cost |p| ∈ [0,∞];

• for each x ∈ ObX, a morphism 0 → ∑ f : x→x | f | in Σ[0,∞]≥ consisting of:
– a constant path idx : x → x,
– satisfying nonpositivity: | idx| ≤ 0, and thus | idx|= 0;

• for each x,y,z ∈ ObX, a morphism

∑
f : x→y

∑
g : y→z

(| f |+ |g|)→ ∑
h : x→z

|h|

in Σ[0,∞]≥ consisting of, for each f : x → y and g : y → z:
– a composite path g f : x → z,
– satisfying the triangle inequality: |g f | ≤ | f |+ |g|. ♢

A weighted category X with |X(x,y)|= 1 for all x,y ∈ ObX is a Lawvere metric space [Law73].
By Theorem 4.3, a weighted category X, defined above as an enriched category, is equivalently a

comonoid in (ΣΠ[0,∞]≤,0,◁). Then we can define a discrete dynamical system on X in terms of the
category ΣΠ[0,∞]≤ as follows.

Definition 5.2. A discrete dynamical system on a weighted category X, viewed as a comonoid object
X ∈ ΣΠ[0,∞]≤, is a morphism ϕ : X → ∞ in ΣΠ[0,∞]≤. It thus consists of the following data:

• a trivial on-positions function ϕ : ObX → 1;
• for each point x ∈ ObX, an on-directions function ϕ

♯
x : 1→ ∑y∈XX(x,y) that picks out a path ϕ

♯
x

from x to some other point,
• satisfying the trivial inequality |ϕ♯

x | ≤ ∞. ♢

In other words, a discrete dynamical system on X assigns to each point x in X a path ϕ
♯
x : x → x1 out

of that point. The intuition is that starting from x, the system moves to a new point x1 along the path ϕ
♯
x

in one time step. We can “run” the system by taking the n-fold composition product ϕ◁n for n ∈ N and
composing with the canonical n-ary comultiplication δ n−1 of X provided by its comonoid structure:4

X
δ n−1

−−→X◁n ϕ◁n

−−→ ∞
◁n ∼= ∞+ · · ·+∞ ∼= ∞. (2)

4We inductively define δ 1 := δ and δ n := (idX◁(n−1) ◁δ )◦δ n−1.
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This is a new discrete dynamical system that assigns to each point x in X the n-fold composite of paths

x
ϕ
♯
x−→ x1

ϕ
♯
x1−−→ x2

ϕ
♯
x2−−→ ·· ·

ϕ
♯
xn−1−−−→ xn (3)

from X, mapping out the evolution of the dynamical system after n time steps. Similarly, given another
discrete dynamical system ψ : X→ ∞, we can compose it with the first to obtain a third system that runs
one before the other:

X
δ−→X ◁X

ϕ ◁ψ−−−→ ∞◁∞ ∼= ∞.

Furthermore, we could repackage the data of a discrete dynamical system as an enriched cofunctor by
the following proposition, where X is a weighted category viewed as a comonoid object X ∈ ΣΠ[0,∞]≤.

Proposition 5.3. There is a natural correspondence between discrete dynamical systems ϕ : X → ∞

and enriched cofunctors Φ : X ↛ ∏n∈N ∞, whose codomain is the one-object (Σ[0,∞]≥,0,⊕)-enriched
category with hom-set N, addition as composition, and all weights infinite.

Proof. Given ϕ , construct Φ by setting Φ
♯
x(n) to the composite path defined in (3) for x ∈ ObX and

n ∈ N (with Φ
♯
x(0) := idx); the cofunctor laws follow immediately. Conversely, given Φ, construct ϕ by

setting ϕ
♯
x := Φ

♯
x(1). These constructions are natural and mutually inverse.

Thus discrete dynamical systems on X are precisely enriched cofunctors X ↛ ∏n∈N ∞. We could
generalize how these systems run by replacing N with some other monoid, or indeed by replacing the
entire codomain by a different weighted category, which could in turn be acted on via an enriched co-
functor to another weighted category, and so forth—suggesting the versatility of comonoids in ΣΠC for
modeling general interactions.

So far, the examples we have described could have been done in ΣΠ1 ≈ Poly (indeed, the material so
far is adapted from [Spi20; NS23]); we have yet to make use of the enriched structure. Now we will put
finite weights in the codomains of our systems to bound their behavior.

Definition 5.4. A discrete dynamical system ϕ : X → ∞ is bounded (above) by r ∈ [0,∞] if ϕ factors
through the morphism r → ∞ in [0,∞]≤ ⊂ ΣΠ[0,∞]≤. Equivalently, for each point x ∈ ObX, the path ϕ

♯
x

has cost at most r. ♢

Boundedness is well-behaved under composition: if ϕ : X → ∞ factors through r as ϕ : X → r, then
the n-fold composition product ϕ◁n : X◁n → ∞◁n ∼= ∞ factors through r◁n ∼= nr as ϕ

◁n : X◁n → r◁n.
Hence the n-fold composite dynamical system ϕ◁n ◦ δ n−1 from (2) must factor through nr as well, so
it is a discrete dynamical system bounded by nr. This coincides with our intuition: if the cost of every
time step of a dynamical system is bounded above by r, then the cost of n successive time steps must be
bounded above by nr. We thus have the following result, generalizing Proposition 5.3.

Proposition 5.5. There is a natural correspondence between discrete dynamical systems ϕ : X → ∞

bounded above by r ∈ [0,∞] and enriched cofunctors Φ : X ↛ ∏n∈N nr, whose codomain is the one-
object (Σ[0,∞]≥,0,⊕)-enriched category with hom-set N, addition as composition, and weights |n| := nr.

Proof. The construction mirrors the one in the proof of Proposition 5.3; we need only verify that the
additional restrictions on costs are satisfied. Given ϕ bounded by r, the n-fold composite path from (3)
has cost at most nr, ensuring |Φ♯

x(n)| ≤ nr. Conversely, given Φ, we have |ϕ♯
x |= |Φ♯

x(1)| ≤ r.
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The preceding material is only a small sample of how ΣΠ[0,∞]≥ and, by extension, ΣΠC may be used
to model compositional behavioral patterns of dynamical systems. We could generalize the codomain of
our discrete dynamical systems beyond one-position, one-direction polynomials in C; we could general-
ize C beyond mere posets; and so forth. Indeed, Propositions 5.3 and 5.5 are special cases of a far more
general result.

Theorem 5.6. The forgetful functor from comonoids in (ΣΠC,e,◁) to their underlying polynomials has
a right adjoint, yielding cofree (ΣCop,e,⊙)-enriched categories on polynomials in C.

Sketch of proof. The construction follows the analogous result for cofree polynomial comonads as de-
tailed in [NS23]. There the cofree category on a given polynomial has tuples of the polynomial’s di-
rections as morphisms; we then assign each tuple a weight in C equal to the monoidal product of the
predicates of the directions in the tuple.

6 Future directions

We close with future directions for research in addition to the potential applications already suggested.

Foundations of polynomial categories

Spivak surveys categorical properties and structures on Poly ≈ ΣΠ1 in [Spi23]; in addition to those we
have already covered, it would be instructive to examine which of these properties and structures carry
over to ΣΠC, perhaps requiring various conditions on C. Similarly, we could investigate how known
structures on Dial(Set)≈ Hmg(2) carry over to Hmg(C).

Interaction between monoidal structures on polynomials

Spivak observed that ◁ is duoidal over ⊗ in the case of C := 1, i.e. there is a natural transformation (−◁

−)⊗ (−◁−)→ (−⊗−)◁ (−⊗−) satisfying various coherence conditions [Spi20]. Shapiro and Spivak
go on to leverage this duoidality to model compositional dependence [SS22b]. We hope to generalize
their results to the parallel and compositional products on ΣΠC.

Other monoidal structures on polynomials

Given a monoidal category (C,e, ·), there are at least two other monoidal structures on ΣΠC with unit e:
one given by (

∑
i∈I

∏
a∈Ai

ui,a

)
1
(

∑
j∈J

∏
b∈B j

v j,b

)
:= ∑

i∈I
∑
j∈J

∏
a : J→Ai

∏
b : I→B j

(ui,a j · v j,bi)

and another given by(
∑
i∈I

∏
a∈Ai

ui,a

)
⋊
(

∑
j∈J

∏
b∈B j

v j,b

)
:= ∑

i∈I
∑
j∈J

∏
a : J→Ai

∏
b∈B j

(ui,a j · v j,b)

We would like to know if there are interpretations or applications for these monoidal products as there
are for the parallel and composition products.
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[Atk+21] Robert Atkey, Bruno Gavranović, Neil Ghani, Clemens Kupke, Jérémy Ledent, and Fredrik
Nordvall Forsberg. “Compositional Game Theory, Compositionally”. In: Electronic Proceed-
ings in Theoretical Computer Science 333 (Feb. 2021), pp. 198–214. DOI: 10.4204/eptcs.
333.14 (cit. on p. 1).

[AU16] Danel Ahman and Tarmo Uustalu. “Directed Containers as Categories”. In: Electronic Pro-
ceedings in Theoretical Computer Science 207 (Apr. 2016), pp. 89–98. DOI: 10.4204/
eptcs.207.5 (cit. on pp. 1, 9).

[AU17] Danel Ahman and Tarmo Uustalu. “Taking Updates Seriously”. In: BX@ETAPS. 2017 (cit.
on pp. 1, 9).

[Cap22] Matteo Capucci. Diegetic Representation Of Feedback In Open Games. 2022. arXiv: 2206.
12338 (cit. on p. 1).

[CM22] Bryce Clarke and Matthew Di Meglio. An introduction to enriched cofunctors. 2022. arXiv:
2209.01144 (cit. on pp. 2, 8).
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