Operads arising from base-valued enriched functors

Rory Lucyshyn-Wright¹

Brandon University, Canada

Multicategories, also called *operads*, were introduced by Lambek in his categorical studies of logic and linguistics [1, 2]. Multicategories are widely used in applied category theory, as they provide a very general formalism for compositional structures; for example, see [3, 4] and the references therein.

In this talk, we provide a general result that gives rise to a great many examples of symmetric multicategories, both new and old. Given any symmetric multicategory \mathscr{V} and any \mathscr{V} -enriched category \mathscr{C} equipped with a suitably \mathscr{V} -enriched functor $G : \mathscr{C} \to \mathscr{V}$, we define a notion of *G*-multimorphism that generalizes the notions of multilinear map and \mathbb{T} -multimorphism for a commutative monad \mathbb{T} [5], while in our setting G does not even need to be faithful, let alone monadic. A G-multimorphism $f : A_1, A_2, ..., A_n \to B$ for objects $A_1, ..., A_n, B$ of \mathscr{C} is a morphism $|f| : GA_1, ..., GA_n \to GB$ in \mathscr{V} equipped with a family of morphisms $f^{(j)} : GA_1, ..., GA_{j-1}, GA_{j+1}, ..., GA_n \to \mathscr{C}(A_j, B)$ $(j \in \{1, ..., n\})$ in \mathscr{V} satisfying a certain axiom. In the case where the list $A_1, ..., A_n$ is nonempty (i.e. n > 0), the morphism |f| is uniquely determined by the $f^{(j)}$.

We show that there is a symmetric multicategory \mathscr{C}_G whose morphisms are the Gmultimorphisms. The underlying ordinary category of \mathscr{C}_G is the same as that of \mathscr{C} , because a G-multimorphism $f: A_1 \to B$ of arity n = 1 is given by a morphism $f^{(1)}: \to \mathscr{C}(A_1, B)$ of arity 0 in \mathscr{V} . As a corollary, if \mathscr{C} is any locally small category and $G: \mathscr{C} \to \text{Set}$ is any Set-valued functor, then \mathscr{C} underlies a symmetric multicategory \mathscr{C}_G whose morphisms are the G-multimorphisms. In this case where $\mathscr{V} = \text{Set}$, examples of G-multimorphisms for suitable choices of G include (1) multilinear maps, when \mathscr{C} is the category of vector spaces over a field, (2) maps that are continuous in each variable separately, when \mathscr{C} is the category of topological spaces, (3) maps that are 'group homomorphisms in each variable separately', when \mathscr{C} is the category of groups, (4) sesquifunctors, when \mathscr{C} is the category of small categories, and (5) graph morphisms defined on the box product of several graphs, when \mathscr{C} is any one of several categories of graphs. These examples may all be regarded as special cases of the following further corollary: If C is any object of a locally small category \mathscr{C} , then the functor $\mathscr{C}(C, -): \mathscr{C} \to \text{Set}$ equips \mathscr{C} with the structure of a symmetric multicategory. Examples when \mathscr{V} is a closed category other than Set abound also and include not only versions of certain of the above examples internal to suitable bases $\mathscr V$ but also certain unfamiliar but nontrivial examples that arise when \mathscr{V} is the Lawvere half-line, by taking \mathscr{C} to be a normed vector space regarded as a metric space and so as a \mathcal{V} -category. But our general result can be applied to any symmetric multicategory \mathscr{V} , which need not be closed nor monoidal.

¹We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada. Nous remercions le Conseil de recherches en sciences naturelles et en génie du Canada de son soutien.

References

- [1] J. Lambek, Deductive systems and categories. II. Standard constructions and closed categories, Lecture Notes in Mathematics 86 (1969), 76–122, Springer.
- [2] J. Lambek, On a connection between algebra, logic and linguistics, Diagrammes 22 (1989), 59–75.
- [3] B. Fong, D. I. Spivak, An invitation to applied category theory. Seven sketches in compositionality. Cambridge University Press, Cambridge, 2019. xii+338 pp.
- [4] J. D. Foley, S. Breiner, E. Subrahmanian and J. M. Dusel, Operads for complex system design specification, analysis and synthesis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477 (2021), Issue 2250.
- [5] A. Kock. Bilinearity and cartesian closed monads. Mathematica Scandinavica 29 (1971), 161–174.