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Decapodes Decapodes.jl is a framework for encoding
multiphysics equations, managing the composition of com-
plex multiphysics systems, and automatically generating
performant simulation code. A Decapode diagram is a
combinatorial data structure in which nodes define phys-
ical quantities, and directed edges define the computa-
tional relationship between these quantities. A prior talk [4]
focused on the theoretical aspects of encoding models.
Here, we present the computational aspects from our Ju-
lia implementation: Decapodes.jl. Our goals are achieved
by employing attributed C-Sets (ACSets) from Catlab.jl,
specifying operadic composition patterns via Relational-
Diagrams from Catlab.jl, and using differential opera-
tors from the Discrete Exterior Calculus (DEC). This talk
builds off work in a manuscript under review in the Jour-
nal of Computational Sciences.

Motivation In 2013, a diverse group of 45 researchers
assessed the state of simulation tools for coupled physi-
cal processes [5]. Scientists interested in implementing
novel multiphysics simulations are faced with a dilemma
of either implementing novel multiphysics solvers tai-
lored to their problem or adapting and extending an ex-
isting multiphysics solver. The first of these options is,
in general, expensive and time-consuming, and there is
a possibility of bugs being introduced due to the com-
munication gap between scientist and programmer. The
second option, when possible and affordable, can still
be difficult to integrate into established workflows. De-
capodes.jl is an attempt at answering both legs of this
dilemma by automating some roles of the programmer,
by exploiting explicit rather than implicit model repre-
sentation in code.

Discrete Exterior Calculus We provide here a short
motivation for the DEC. Issues arise in numerical partial
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Figure 1: The de Rahm complex in 3D.

differential equations (PDEs) when discretizing contin-
uous mathematics with informal knowledge about com-
patible discretizations. In the exterior calculus, the ith
exterior derivative di takes i-forms to i+ 1-forms. This
discrete differential operator satisfies didi+1 = 0, preserv-
ing for example that the divergence of a gradient is 0.
However, due to discreteness, the discrete Hodge star op-
erator, ⋆ is not an isomorphism between primal and dual
forms. The DEC makes this process rigorous via the de
Rahm complex. A categorical presentation of equations
over the de Rahm complex is given in prior work [8].

The Decapode ACSet A Decapode diagram is a com-
binatorial data structure in which nodes define physical
quantities, and directed edges define the computational
relationship between these quantities. Using the foun-
dations of categorical databases [10] and the technique
of representation of mathematical objects as instances of
categorical databases [9], we encode a Decapode as an
“ACSet”. An ACSet is a functor from a schema category
C to Set, with attributes. In essence, a Decapode diagram
is an in-memory database, whose schema is that shown
in Figure 2. An example instance of such a database is
shown tabularly in Figure 2, corresponding to the dia-
gram shown in Figure 2. This approach builds off of
the HypΣ approach to typed hypergraphs introduced by
Bonchi et al. [2].

Fluid Dynamics To demonstrate the expressiveness of
Decapodes.jl, we offer an implementation of the DEC
formulation of the incompressible Navier-Stokes equa-
tions as given by Mohamed et al. [7]. A diagram of this
formulation is included in Figure 3. Code which can be
parsed to encode this Decapode is shown in Figure 3.

Composition & Compilation of Physics We observe
that large multiphysics systems are typically more com-
plex in terms of dependencies between computations of
physical quantities. Without a formal description of com-
position, extending a system is time consuming and error-
prone. To handle the complexity introduced by extending
multiphysics systems, we employ composition patterns
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Figure 2: The schema for repre-
senting Decapodes. An instance
is a relational database, and can
be visualized as a string diagram.
(Left-to-right)

Equation10ForN2 = @decapode begin

U::Form1

(P, pd)::Form0

µ::Constant

pd == P + 0.5 * i(u,u)

dt(u) == µ * ◦(d, ⋆, d, ⋆)(u) -

⋆(∧(u, ⋆(d(u)))) + d(pd)

end

U:Ω₁

U̇:Ω•

∂ₜ

•6:Ω•

d⋅⋆⋅d⋅⋆

•10:Ω•

d

Ω₁×Ω₁

π₁π₂

Ω₁×Ω•

π₁

P:Ω₀

Σ1

pd:Ω₀

sum_1:Ω•

d

μ:ΩC

ΩC×Ω•

π₁

•1:Ω•

0.5:ΩL

ΩL×Ω•

π₁

•2:Ω•

π₂

Σ2

•4:Ω•

•5:Ω•

Ω•×Ω•

π₁

π₂

•7:Ω•

π₂

•8:Ω•

⋆

•9:Ω•

π₂

⋆ i

*

*

∧

-

+

+

Figure 3: The specification of a conservative
Incompressible Navier Stokes on a generic
manifold along with a solution on a dis-
cretized sphere. Part of the equations are
given in a domain specific language, the De-
capode representation of the those parts, and
the solution visualization (clockwise from
top-left). A Decapode can be interpreted as
a string diagram and then executed like a
functional program that computes the time-
step update for the dynamical system. Ar-
rows pointing to a node from nothing are a
visual aid to denote that such nodes (U, P, µ)
need no prior computation, and nodes (U̇)
which point to nothing denote tangent vari-
ables.

as undirected wiring diagrams [6]. This approach builds
off of the work of structured cospans [1, 3]. Physical
models compose by sharing variables. Because our De-
capodes representation uses copresheaves, the structured
cospan construction provides the necessary hypergraph
structure. A Decapode is compiled to simulation code via
an algorithm similar to topological sort. State variables
are inferred, corresponding to those quantities which re-
quire initial conditions. Iteratively, the outneighbors of
these variables are computed according to the operator
stored on the corresponding directed edge. (Binary op-
erators are handled in a similar manner, with the code
for computing the arguments emitted prior to that for the
argument.)

Summary Decapodes.jl combines many aspects of ap-
plied category theory including symmetric monoidal cat-
egories, structured cospans, and synthetic approaches to
differential geometry to build a practical and useful mul-
tiphysics solver framework. A high-level workflow is en-
abled in which computational problems are set up via
the well-defined manipulation of explicitly-represented

models formalized via applied category theory.
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