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Delta lenses are functors equipped with a suitable choice of lifts, and are used to model bidirectional
transformations between systems. In this paper, we construct an algebraic weak factorisation system
whose R-algebras are delta lenses. Our approach extends a semi-monad for delta lenses previously
introduced by Johnson and Rosebrugh, and generalises to any suitable category equipped with an
orthogonal factorisation system and an idempotent comonad. We demonstrate how the framework
of an algebraic weak factorisation system provides a natural setting for understanding the lifting
operation of a delta lens, and also present an explicit description of the free delta lens on a functor.

1 Introduction

Delta lenses were first introduced by Diskin, Xiong, and Czarnecki [17] as an algebraic framework
for bidirectional transformations [1, 13] between systems, particularly in the context of model-driven
engineering [16, 28]. The original motivation behind delta lenses came from adapting the classical notion
of a lens [19] from a “state-based” setting to a “delta-based” setting. Instead of treating a system as a mere
set of states, it should be regarded as a category, whose objects are the states of the system and whose
morphisms are the updates (or deltas) between them. The purpose of delta lenses is to model the notion of
synchronisation between systems through specifying how certain updates between states are propagated.

A delta lens is a functor f : A→ B equipped with a lifting operation, see (1), that satisfies certain
axioms. The lifting operation specifies, for each object a in A and for each morphism u : f a→ b in B, a
morphism ϕ(a,u) : a→ a′, often called the chosen lift, such that f ϕ(a,u) = u. The axioms placed on the
lifting operation ensure that it respects identities and composition. Thus a delta lens is a functor equipped
with additional algebraic structure, and it is natural to wonder if delta lenses arise as algebras for a monad.
In this paper, we provide an answer in the affirmative.

{0} A

{0→ 1} B

a

f

u

ϕ(a,u) (1)

The question of asking whether certain kinds of lenses are algebras for a monad is not new. Classical
state-based lenses [19] were characterised by Johnson, Rosebrugh, and Wood [26] as algebras for a monad
on the slice category Set/B. The same authors later introduced the notion of a c-lens [25], better known
as a split opfibration, and characterised them as algebras for a monad, first introduced by Street [29], on
the slice category Cat/B. Delta lenses generalise state-based lenses and split opfibrations [24], however
they were only shown by Johnson and Rosebrugh [23] to be certain algebras for a semi-monad (a monad
without a unit) on Cat/B. One of the contributions of the current paper is resolve this gap in the literature.
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Although it is generally useful to know when a mathematical structure arises as an algebra for a monad,
in isolation this result provides limited benefit towards a deeper understanding of lenses. One reason is
that we wish to study lenses as morphisms of a category, rather than objects in a category of algebras. The
knowledge that lenses are morphisms with algebraic structure does not provide any information of how to
sequentially compose them, nor justification for why this algebraic structure encodes a notion of lifting.

Cofunctors1 are a natural kind of morphism between categories [2, 22] which fundamentally involve a
lifting operation and admit a straightforward sequential composition. The characterisation of delta lenses
as a compatible functor and cofunctor [3, 7], together with related characterisations of state-based lenses
and split opfibrations [8], provides a clear understanding of their composition and lifting, and has led to
several fruitful developments in the study of lenses in applied category theory [6, 10, 14]. However the
question remains: why do lenses frequently arise as algebras for a monad?

An algebraic weak factorisation system [4], also known as a natural weak factorisation system [21],
generalises the notion of an orthogonal factorisation system (OFS) on a category. An algebraic weak
factorisation system (AWFS) on a category C consists of a comonad (L,ε,∆) and a monad (R,η ,µ) on C2

that are suitably compatible. The categories of L-coalgebras and R-algebras of an AWFS (L,R) replace
the usual left and right classes of morphisms of an OFS. In particular, every morphism factors into a cofree
L-coalgebra followed by free R-algebra, and every lifting problem (2), where ( f , p) is a L-coalgebra and
(g,q) is a R-algebra, admits a chosen lift ϕ f ,g〈h,k〉 making the diagram commute. Crucially, these chosen
lifts also induce a canonical composition of R-algebras [4, Section 2.8]. Both classical state-based lenses
and split opfibrations arise as R-algebras for an AWFS on Set and Cat, respectively.

A C

B D

h

( f , p) (g,q)

k

ϕ f ,g〈h,k〉 (2)

The main contribution of this paper is to construct an algebraic weak factorisation system (L,R) on Cat
whose R-algebras are precisely delta lenses. The principal benefit is a new framework for understanding
lenses as algebras for a monad that naturally incorporates the fundamental aspects of composition and
lifting. In addition, we are able to generalise the notion of delta lens to any suitable category equipped with
an orthogonal factorisation system and idempotent comonad, as well as present an explicit description
of the free delta lens on the functor. This approach to lenses as algebras for a monad also highlights an
interesting duality with their recent characterisation as coalgebras for a comonad [9].

Overview of the paper. In Section 2 we review the necessary background material on delta lenses
and factorisation systems. In particular, we recall two important structures on Cat, the comprehensive
factorisation system (Example 6) and the discrete category comonad (Example 12), which are generalised
in our main constructions to an orthogonal factorisation system and an idempotent comonad, respectively.
In Section 3 we utilise these structures on a category C to build a semi-monad on C2 (Proposition 13), and
show that when C= Cat (Example 15), we recover delta lenses as certain algebras for this semi-monad
(Theorem 17 and Appendix A). In Section 4 we enhance this construction to a monad (Theorem 19) using
pushouts in C, and prove that when C= Cat, the algebras for this monad are delta lenses (Theorem 23).
We also describe the free delta lens on a functor (Example 27). Section 5 completes the construction of
an algebraic weak factorisation system on C (Theorem 29) and shows how delta lenses lift against the
L-coalgebras when C= Cat. Section 6 presents some concluding remarks and avenues for future work.

1The term retrofunctor proposed by Di Meglio [14] is preferred, but not yet in widespread use.
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2 Background

2.1 Delta lenses

We introduce the category Lens whose objects are delta lenses, which we will later show is the category
of algebras for a monad on Cat2. For further details and examples, we refer the reader to [11, Chapter 2].
Definition 1. A delta lens ( f ,ϕ) : A→ B consists of a functor f : A→ B together with a lifting operation

(a ∈ A,u : f a→ b ∈ B) 7−→ ϕ(a,u) : a→ p(a,u),

where p(a,u) = cod(ϕ(a,u)), that satisfies the following three axioms:
(L1) f ϕ(a,u) = u

(L2) ϕ(a,1 f a) = 1a

(L3) ϕ(a,v◦u) = ϕ(p(a,u),v)◦ϕ(a,u)
Example 2. A discrete opfibration is a functor f : A→ B such that for each pair (a ∈ A,u : f a→ b ∈ B)
there is a unique morphism f̄ (a,u) : a→ a′ in A for which f f̄ (a,u) = u. Thus each discrete opfibration f
admits a unique lifting operation f̄ such that the pair ( f , f̄ ) is a delta lens. Conversely, the underlying
functor f of a delta lens ( f ,ϕ) is a discrete opfibration if ϕ(a, f w) = w for all morphisms w : a→ a′ in A.
Definition 3. Let Lens denote the category whose objects are delta lenses and whose morphisms
〈h,k〉 : ( f ,ϕ)→ (g,ψ) consist of a pair of functors h and k such that k◦ f = g◦h and hϕ(a,u) =ψ(ha,ku).

A C

B D

h

( f ,ϕ) (g,ψ)

k

!
{0} A C

{0→ 1} B D

a

f

h

g

u

ϕ(a,u)

k

=

{0} C

{0→ 1} D

ha

g

ku

ψ(ha,ku)

Let U : Lens→ Cat2 denote the canonical forgetful functor that sends ( f ,ϕ) to f .

2.2 Factorisation systems

We recall two related notions of factorisation system on a category: orthogonal factorisations systems [20]
and algebraic weak factorisation systems [4, 21]. For a full account, we refer the reader to [4, Section 2].
Definition 4. An orthogonal factorisation system (E,M) on a category C consists of two classes of
morphisms E and M, both containing the isomorphisms and closed under composition, such that:

(i) Factorisation: Every morphism f of C admits a factorisation f = m◦ e with e ∈ E and m ∈M;

(ii) Orthogonality: For each solid commutative square in C below such that e ∈ E and m ∈M, there
exists a unique morphism h such that f = h◦ e and g = m◦h.

A C

B D

f

e m

g

∃!
h

Notation 5. As a visual aid when diagram-chasing, the morphisms in the left class E and the right class M
of an orthogonal factorisation system on C will be decorated in the remainder of the paper as follows.

• •e∈E • •m∈M
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Example 6. A functor f : A→ B is called initial if, for each object b ∈ B, the comma category f/b is
connected. The comprehensive factorisation system [31] is an orthogonal factorisation system (E,M) on
Cat in which E is the class of initial functors and M is the class of discrete opfibrations.
Lemma 7. If (E,M) be an orthogonal factorisation system on C, then the following properties hold:

(1) The class E is stable under pushouts in C.

(2) If g◦ f and f are in E, then g is in E. Dually, if g◦ f and g are in M, then f is in M.
Definition 8. A functorial factorisation (L,E,R) on a category C is a section (L,E,R) : C2→ C3 to the
composition functor C3→ C2. The factorisation of a morphism in C2 is denoted as follows.

A C

B D

h

f g

k

7−→

A C

E f Eg

B D

h

L f

f

Lg

g
E〈h,k〉

R f Rg

k

Remark 9. Each functorial factorisation (L,E,R) on C induces a copointed endofunctor (L,ε) and a
pointed endofunctor (R,η) on C2, where the components of ε : L⇒ 1 and η : 1⇒ R at f are given below.

A A

E f B

L f f

R f

A E f

B B

L f

f R f (3)

Definition 10. [4, Section 2.2] An algebraic weak factorisation system (L,R) on a category C consists of:
(i) A functorial factorisation (L,E,R) on C;

(ii) An extension of (L,ε) to a comonad (L,ε,∆) on C2;

(iii) An extension of (R,η) to a monad (R,η ,µ) on C2;

(iv) A distributive law λ : LR⇒ RL of the comonad L over the monad R with components λ f = 〈∆ f ,µ f 〉.

2.3 Idempotent comonads and weak equivalences

Given an idempotent comonad (M, ι) on a category C, let W = { f ∈ C | M f is invertible} denote the
class of morphisms in C whose members are called weak equivalences. This class satisfies the 2-out-of-3
property, and contains the isomorphisms, thus making C a category with weak equivalences [18]. Since
the comonad M is idempotent, each counit component ιA is inverted by M and therefore a morphism of W.
If M preserves pushouts, the morphisms in W are stable under pushout along morphisms in C.
Notation 11. As a visual aid when diagram-chasing, the morphisms in the class W of weak equivalences
of a category C will be decorated in the remainder of the paper as follows.

• •∼
w∈W

Example 12. Let (−)0 : Cat→ Cat denote the idempotent comonad that assigns a category A to its
corresponding discrete category A0 with counit component ιA : A0→ A. The endofunctor (−)0 has a right
adjoint (the codiscrete category monad) and therefore preserves all colimits. A functor f : A→ B is called
bijective-on-objects if f0 is invertible; these are precisely the weak equivalences with respect to (−)0.
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3 Delta lenses as certain algebras for a semi-monad

Throughout this section, let (E,M) be an orthogonal factorisation system on a category C, and let (M, ι)
be an idempotent comonad on C with corresponding class W of weak equivalences.

3.1 Constructing a semi-monad for delta lenses

We now construct a semi-monad (T,ν) on the category C2, for a category C equipped with an idempotent
comonad (M, ι) and an orthogonal factorisation system (E,M). We show that when C= Cat equipped
with the discrete category comonad and the comprehensive factorisation system, this specialises to the
semi-monad defined on Cat2 by Johnson and Rosebrugh [23, Section 6].

We begin by constructing an endofunctor T : C2→ C2. Given a morphism f : A→ B in C, we first
pre-compose with the counit component ιA : MA→ A and then choose an (E,M)-factorisation of the
resulting morphism as depicted in commutative square (i) below; this defines the action of T on objects
in C2. Given a morphism 〈h,k〉 : f → g in C2, there exists a unique morphism J〈h,k〉 : J f → Jg in C by
applying the orthogonality property; the action of T on the morphism 〈h,k〉 is given by the commutative
square (ii) depicted below. Note that the equation (4) holds by naturality of ι : M⇒ 1 at the morphism h.

MA A C

J f

B B D

ιA
∼

S f

(i) f

h

g

T f

k

=

MA MC C

J f Jg

B C C

S f

Mh

Sg

ιC
∼

g

T f

J〈h,k〉

(ii) T g

k

(4)

Applying the functor T to the morphism T f : J f → B and using the orthogonality property, we obtain
the component ν f of the multiplication ν : T 2⇒ T at f as depicted in the commutative square (iii) below.
Naturality of ν at follows from noticing in (5) that J〈h,k〉 ◦ν f = νg ◦ J〈J〈h,k〉,k〉 by orthogonality.

MJ f J f Jg

JT f

B B D

ST f

ιJ f

∼

T f

J〈h,k〉

T g

T 2 f

ν f

(iii)

k

=

MJ f MJg Jg

JT f JT g

B D D

ST f

MJ〈h,k〉 ιJg

∼

ST g

T g
J〈J〈h,k〉,k〉

T 2 f T 2g

νg

k

(5)

The associative law for ν follows from observing in (6) that ν f ◦νT f = ν f ◦ J〈ν f ,1B〉 by orthogonality.

MJT f JT f J f

JT 2 f

B B B

ST 2 f

ιJT f

∼

T 2 f

ν f

T f

T 3 f

νT f

=

MJT f MJ f J f

JT 2 f JT f

B B B

ST 2 f

Mν f ιJ f

∼

ST f

T f
J〈ν f ,1B〉

T 3 f T 2 f

ν f

(6)

We have thus constructed an endofunctor T : C2→ C2 with an associative multiplication ν : T 2⇒ T .
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Proposition 13. The pair (T,ν) is a semi-monad on C2.
Corollary 14. The semi-monad (T,ν) on C2 restricts to a semi-monad in the 2-category CAT/C on the
codomain functor cod: C2→ C. In particular, (T,ν) induces a semi-monad on each slice category C/B.
Example 15. Consider the category Cat equipped with the comprehensive factorisation system and the
discrete category comonad. Given a functor f : A→ B, the category J f defined in (4) is given by the
coproduct ∑a∈A0 f a/B of the coslice categories indexed by the discrete category A0. The objects in J f are
pairs (a ∈ A,u : f a→ b ∈ B), while morphisms 〈1a,v〉 : (a,u1)→ (a,u2) are given by morphisms v ∈ B
such that u2 = v◦u1. The functor S f : A0� J f has an assignment on objects a 7→ (a,1 f a), and is an initial
functor since each slice category S f/(a,u) is isomorphic to the terminal category and hence connected.
The functor T f : J f � B is given by the codomain projection with assignment on objects (a,u) 7→ cod(u),
and is a discrete opfibration. Therefore, in this setting, restricting the semi-monad (T,ν) to the slice
categories Cat/B coincides with semi-monad for delta lenses defined by Johnson and Rosebrugh [23].

3.2 Delta lenses as certain semi-monad algebras

An algebra ( f , p) for the semi-monad (T,ν) on the codomain functor cod: C2→ C (or, equivalently, on
the slice category C/B) consists of a pair of morphisms f : A→ B and p : J f → A such that the following
diagrams commute.

J f A

B B

p

T f f

JT f J f

J f A

J〈p,1B〉

ν f p

p

(7)

Johnson and Rosebrugh (JR) introduced an additional condition on the algebras for the semi-monad (T,ν)
on Cat/B which we now adapt to our more general setting under the name JR-algebra. The intuition is
that this additional condition replaces the missing “unit law” that an algebra for a monad would satisfy.
Definition 16. A JR-algebra is an algebra ( f , p) for the semi-monad (T,ν) on the codomain functor
cod: C2→ C such that the following diagram commutes.

MA A

J f

S f

ιA
∼

p
(8)

A morphism 〈h,k〉 : ( f , p) → (g,q) of algebras for the semi-monad (T,ν) consists of a pair of
morphisms h and k such that the following equation in C2 holds.

J f A C

B B D

p

T f f

h

g

k

=

J f Jg C

B D D

J〈h,k〉

T f

q

T g g

k

(9)

Let Alg(T,ν) denote the category of algebras for the semi-monad (T,ν) on the codomain functor
cod: C2→ C, and let AlgJR(T,ν) denote the full subcategory of JR-algebras.
Theorem 17. If C= Cat equipped with the discrete category comonad and the comprehensive factorisation
system, then there is an isomorphism of categories Lens∼=AlgJR(T,ν).

Proof. This result is due to Johnson and Rosebrugh [23]. See Appendix A for a proof in our notation.
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4 Delta lenses as algebras for a monad

Throughout this section, let (E,M) be an orthogonal factorisation system on a category C with (chosen)
pushouts, and let (M, ι) be an idempotent comonad on C such that M : C→ C preserves pushouts.

4.1 Constructing a monad for delta lenses

We now extend the semi-monad (T,ν) to a monad (R,η ,µ) on C2, for a category C as described above.
Our approach is to utilise the universal properties of pushouts and orthogonal factorisation systems, as well
as properties of the class of weak equivalences for the idempotent comonad, to construct the necessary
data for the monad from that of the semi-monad (T,ν).

We begin by constructing an endofunctor R : C2 → C2. Given a morphism f : A→ B in C, first
construct the pushout of ιA along S f from (4), and then use the universal property of the pushout to define
a morphism R f : E f → B as depicted on the left below; this defines the action of R on objects in C2.

MA A

J f E f

B B

ιA
∼

S f
p

f

L f

T f

α f

∼

R f

ME f E f

JR f ER f

B B

ιE f

∼

SR f
p
LR f

R f

T R f

αR f

∼

R2 f

(10)

Given a morphism 〈h,k〉 : f → g in C2, there exists a unique morphism E〈h,k〉 : J f → Jg in C, as depicted
below, by the universal property of the pushout, where J〈h,k〉 is defined in (4). It is not difficult to show
through diagram-chasing that Rg◦E〈h,k〉= k ◦R f , thus defining the action of R on morphisms of C2.

MA A

J f E f C

Jg Eg

ιA
∼

S f
p

hL f

J〈h,k〉

α f

∼
E〈h,k〉

Lg

αg

∼

=

MA A

J f MC C

Jg Eg

ιA
∼

S f Mh h

J〈h,k〉

ιC
∼

Sg
p

Lg

αg

∼

(11)

Lemma 18. The triple (L,E,R) constructed in (10) and (11) is functorial factorisation on C.
By Remark 9, this functorial factorisation induces a pointed endofunctor (R,η) on C2 where the

component of η at f is given by the morphism L f : A→ E f as depicted in (3). To extend this pointed
endofunctor to a monad, all that remains is to define a suitable multiplication µ : R2⇒ R.

To construct this multiplication, we first observe that the morphism α f : J f → E f constructed in (10)
is a weak equivalence, and therefore the morphism Mα f : MJ f →ME f is invertible. It follows from the
orthogonality property that the morphism J〈α f ,1B〉 : JT f → JR f is invertible as depicted below.

MJ f ME f

J f E f

B B

Mα f

∼=
ιJ f ∼ ιE f∼

α f

∼

T f R f

=

MJ f ME f

JT f JR f

B B

Mα f

∼=
ST f SR f

J〈α f ,1B〉
∼=

T 2 f T R f

(12)
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Using the universal property of the pushout, the morphism ν f defined in (5), and the morphism J〈α f ,1B〉−1

defined in (12), we obtain the component µ f of the multiplication µ : R2⇒ R at f as depicted below.

ME f E f

JR f ER f

JT f J f E f

ιE f

∼

SR f
p
LR f

J〈α f ,1B〉−1 ∼=

αR f

∼
µ f

ν f α f

∼

=

ME f E f

JR f MJ f

JT f J f E f

ιE f

∼

SR f (Mα f )
−1

∼=

J〈α f ,1B〉−1 ∼=
ST f

ιJ f∼

ν f α f

∼

(13)

A tedious, yet routine, exercise in diagram-chasing using the morphisms defined in (11) and (13), and
applying the universal property of the pushout shows that R f ◦µ f = R2 f and that µ is natural as depicted
below.

ER f E f Eg

B B D

R2 f

µ f

R f

E〈h,k〉

Rg

k

=

ER f ERg Eg

B D D

R2 f

E〈E〈h,k〉,k〉

R2g

µg

Rg

k

Showing that the diagrams below commute, and thus establishing that the multiplication µ is unital and
associative, is also a straightforward application of definitions and the universal property of the pushout.

E f ER f E f

E f

LR f

µ f

E〈L f ,1B〉
ER2 f ER f

ER f E f

E〈µ f ,1B〉

µR f µ f

µ f

Theorem 19. The triple (R,η ,µ) is a monad on C2.

Corollary 20. The monad (R,η ,µ) on C2 restricts to a monad in the 2-category CAT/C on the codomain
functor cod: C2→ C. In particular, (R,η ,µ) induces a monad on each slice category C/B.

Remark 21. The morphisms α f defined as pushout injections in (10) assemble into a natural transformation
α : T ⇒ R which underlies a morphism of semi-monads (T,ν)→ (R,µ). We conjecture that (R,η ,µ) is
actually the free monad on the semi-monad (T,ν), however leave this for future work.

4.2 Delta lenses as monad algebras

We now construct the algebras for the monad (R,η ,µ) on C2 and show they are the same as JR-algebras
for the semi-monad (T,ν). When C= Cat equipped with the comprehensive factorisation system and the
discrete category comonad, this result establishes that delta lenses are algebras for the monad (R,η ,µ).

An algebra ( f , p̂) for the monad (R,η ,µ) on C2 consists of a pair of morphisms f : A→ B and
p̂ : E f → A such that the following diagrams commute:

A A

E f B

L f f

R f

p̂
ER f E f

E f A

E〈p̂,1B〉

µ f p̂

p̂

(14)
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A morphism 〈h,k〉 : ( f , p̂)→ (g, q̂) of algebras for the monad (R,η ,µ) consists of a pair of morphisms h
and k such that the following equation in C2 holds.

E f A C

B B D

p̂

R f f

h

g

k

=

E f Eg C

B D D

E〈h,k〉

R f

q̂

Rg g

k

(15)

Let Alg(R,η ,µ) denote the category of algebras for the monad (R,η ,µ).

Proposition 22. There is an isomorphism of categories AlgJR(T,ν)∼=Alg(R,η ,µ).

Proof. Let ( f : A→ B, p : J f → A) be a JR-algebra for the semi-monad (T,ν). Using the diagram (8)
and the universal property of the pushout, we obtain a morphism [p,1A] : E f → A as depicted below.

MA A

J f E f

A

ιA
∼

S f
p

L f
1A

α f

∼

p

[p,1A]

Using the universal property of the pushout and the axioms for the JR-algebra ( f , p), it is straightforward
to prove that the pair ( f , [p,1A]) is an algebra for the monad (R,η ,µ).

Now consider an algebra ( f : A→ B, p̂ : E f → A) for the monad (R,η ,µ). Pre-composing the
structure map of the algebra with α f we obtain a morphism p̂ ◦α f : J f → B. Using the axioms for
the algebra ( f , p̂) and appropriate pasting of commutative diagrams, one may easily show that the pair
( f , p̂◦α f ) is a JR-algebra for the semi-monad (T,ν).

The JR-algebras for (T,ν) and the algebra for (R,η ,µ) are in bijective correspondence with each
other, since [p̂◦α f ,1A] = p̂ by the universal property of the pushout, and [p,1A]◦α f = p by construction.
One may extend this correspondence to the morphisms (9) and (15) of the respective categories and show
it is functorial, thus establishing the stated isomorphism of categories.

The following theorem establishes a key result of the paper: that delta lenses are algebras for a monad.

Theorem 23. There is an isomorphism of categories Lens∼=Alg(R,η ,µ).

Proof. Follows directly from Theorem 17 and interpreting Proposition 22 in the setting of C = Cat
equipped with the discrete category comonad and the comprehensive factorisation system.

Corollary 24. The forgetful functor U : Lens→ Cat2 is strictly monadic.

4.3 The free delta lens on a functor

We now construct a left adjoint to the functor U : Lens→ Cat2 which defines the free delta lens on a
functor f : A→ B. This amounts to providing an explicit description of the category E f together with a
lifting operation on the functor R f : E f → B. First we recall [7, Corollary 20] the following result which
represents an delta lens as a certain commutative diagram (see [11, Section 2.4] for a detailed proof).
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Proposition 25. Each delta lens ( f ,ϕ) : A→ B determines a commutative diagram in Cat, as depicted on
the left below, such that ϕ is bijective-on-objects and f ϕ is a discrete opfibration.

Λ( f ,ϕ)

A B

ϕ

∼
f ϕ

f

X

A B

g
∼

f g

f

Conversely, each commutative diagram on the right above, where g is bijective-on-objects and f g is a
discrete opfibration, uniquely determines a delta lens structure on f .
Remark 26. The above result may be understood as a consequence of an equivalence of double categories
[11, Section 3.4], however the details are outside the scope of this paper.

Using Proposition 25, the free delta lens on a functor f : A → B corresponds to the following
commutative diagram in Cat constructed in (10). An immediate benefit of this presentation of the free
delta lens is that it condenses the three commutative diagrams (14) for the (free) R-algebra to a single
diagram.

J f

E f B

α f
∼

T f

R f

In Example 15, we unpacked the definition of the category J f and the discrete opfibration T f : J f → B.
We now provide an explicit characterisation of the category E f and the delta lens structure on R f : E f →B.
Example 27. The objects of E f are pairs (a ∈ A,u : f a→ b ∈ B). The morphisms are generated by pairs
〈w, f w〉 : (a,1 f a)→ (a′,1 f a′) and 〈1a,v〉 : (a,u)→ (a,v◦u) for w ∈ A and v ∈ B, respectively, as depicted
below. The identity morphisms are well-defined since f (1a) = 1 f a. As J f has the same objects as E f and
consists of morphisms of the form 〈1a,v〉, the functor α f : J f → E f is identity-on-objects and faithful.

a a′

f a f a′

f a f a′

w

1 f a

f (w)

1 f a′

f w

a a

f a f a

b b′

1a

u

f (1a)

v◦u

v

(16)

The functor R f : E f → B is projection in the second component; on the generators this is given by
R f 〈w, f w〉 = f w and R f 〈1a,v〉 = v. The lifting operation on R f takes an object (a,u) in E f and a
morphism v : cod(u)→ b in B to the chosen lift 〈1a,v〉 : (a,u)→ (a,v◦u) in E f .

Although, in principle, the morphisms in E f are finite sequences of the generators (16), one may show
that each morphism (a1,u1)→ (a2,u2) is actually just one of the following two kinds depicted below:
either a retraction v of u1 followed by morphism w : a1→ a2, or simply a morphism v : cod(u1)→ cod(u2)
such that v◦u1 = u2. The functor R f sends these morphisms to u2 ◦ f w◦ v and v, respectively.

a1 a1 a2 a2

f a1 f a1 f a2 f a2

b1 f a1 f a2 b2

w

u1 � 1

f (w)

1 u2

v f w u2

a1 a2

f a1 f a2

b1 b2

u1 � u2

v
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5 Delta lenses as the R-algebras of an algebraic weak factorisation system

In this section, let (E,M) be an orthogonal factorisation system on a category C with (chosen) pushouts,
and let (M, ι) be an idempotent comonad on C such that M : C→ C preserves pushouts (same as Section 4).

5.1 Constructing the AWFS for delta lenses

Thus far we have constructed a functorial factorisation (L,E,R) on C (Lemma 18), and extended the
pointed endofunctor (R,η) to a monad (R,η ,µ) on C2 (Theorem 19). We now show that the copointed
endofunctor (L,ε) extends to a comonad (L,ε,∆), therefore completing the data required to describe an
algebraic weak factorisation system on C. For C= Cat equipped with the comprehensive factorisation
system and the discrete category monad, this yields an AWFS whose R-algebras are precisely delta lenses.

First we construct the morphism L2 f : A→ EL f as on the left below. Using this diagram and (10), it
follows that T L f ◦SL f = L f ◦ ιA = α f ◦S f and there is solid commutative diagram as on the right below.
By the orthogonality property, there exists a unique morphism δ f : J f → JL f as shown.

MA A

JL f EL f

E f E f

ιA
∼

SL f
p

L2 f

L f
αL f

∼

T L f RL f

MA JL f

J f E f

SL f

S f T L f
α f

∼

δ f (17)

Using the diagrams (17) and the universal property of the pushout, we obtain the component ∆ f of the
comultiplication ∆ : L⇒ L2 at f as depicted below. For each morphism 〈h,k〉 : f → g in C2, we may show
that ∆g ◦E〈h,k〉= E〈h,E〈h,k〉〉 ◦∆ f , providing us with a well-defined natural transformation ∆ : L⇒ L2.

MA A

J f E f

JL f EL f

ιA
∼

S f
p

L f L2 f
α f

∼

δ f

∆ f

αL f

∼

=

MA A

J f

JL f EL f

ιA
∼

S f

p

SL f L2 f

δ f
αL f

∼

Showing that the diagrams below commute, and thus establishing that the comultiplication ∆ is counital
and coassociative, is a straightforward application of definitions and the universal property of the pushout.

E f

E f EL f E f

∆ f

RL f 〈1A,R f 〉

E f EL f

EL f EL2 f

∆ f

∆ f ∆L f

E〈1A,∆ f 〉

Proposition 28. The triple (L,ε,∆) is a comonad on C2.
Theorem 29. The pair (L,R) is an algebraic weak factorisation system on C.

Proof. The data of the algebraic weak factorisation system follows from Lemma 18, Theorem 19, and
Proposition 28. Checking that there is a distributive law λ : LR⇒ RL of the comonad L over the monad R
with components λ f = 〈∆ f ,µ f 〉 involves routine diagram-chasing and applying universal properties.
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5.2 Coalgebras and lifting

A coalgebra ( f ,q) for the comonad (L,ε,∆) consists of a pair of morphisms f : A→ B and q : B→ E f
such that the following diagrams commute:

A E f

B B

f

L f

R f
q

B E f

E f EL f

q

q ∆ f

E〈1A,q〉

Remark 30. In contrast to the algebras for the monad (R,η ,µ), the coalgebras above cannot be easily
simplified since q is a morphism into a pushout. For C= Cat, one may show that for a functor f to admit a
coalgebra structure, it must be a left-adjoint-right-inverse (LARI) and is therefore also injective-on-objects
and fully faithful. A complete characterisation of the L-coalgebras is left for future work.

We now provide a simple diagrammatic proof that delta lenses, in the form of Proposition 25 rather
than as R-algebras, lift against L-coalgebras. Consider a morphism 〈h,k〉 : f → g such that ( f ,q) is an
L-coalgebra and (g,ψ) is a delta lens. Since ψ is bijective-on-objects, ψ0 is invertible, and there is a
morphism ιΛ ◦ψ

−1
0 ◦ h0 : A0 → Λ(g,ψ) making the diagram, depicted below, commute. Then by the

orthogonality property, there exists a unique morphism ` : J f → Λ(g,ψ) such that `◦S f = ιΛ ◦ψ
−1
0 ◦h0

and g ◦ψ ◦ ` = k ◦R f ◦α f . Finally, by the universal property of the pushout, there exists a unique
morphism [ψ ◦ `,h] : E f →C. Thus, there is a specified morphism q ◦ [ψ ◦ `,h] : B→C as on the left
below.

A C

B D

h

f g

k

q◦ [ψ ◦`,h]

Λ(g,ψ)

A0 A C

J f E f D

ψ∼
g◦ψ

ιΛ ◦ψ
−1
0 ◦h0

ιA
∼

S f
p

h

L f g

α f

∼

ψ◦l,h

k◦R f

Therefore we have shown that delta lenses lift against functors with the structure of a L-coalgebra, which
is stronger than one would expect from their simple axiomatic definition. It also demonstrates how the
notion of lifting is intrinsic to delta lenses as the R-algebras of an AWFS. The sequential composition of
delta lenses as R-algebras may also be defined from this notion of lifting against L-coalgebras, providing
further clarification of this essential operation.

6 Concluding remarks and future work

In this paper, we have shown that delta lenses are algebras for a monad (R,η ,µ), and that this monad
arises from an algebraic weak factorisation system on Cat. Moreover, we have shown that this AWFS

exists on any suitable category equipped with an orthogonal factorisation system and an idempotent
comonad which preserves pushouts. These results generalise immediately to internal lenses [7, 8] using
the internal comprehensive factorisation system [30], however an analogous result for enriched lenses [12]
or weighted lenses [27] is currently unknown. There are many avenues for future work. One example is
the relationship between the proxy pullbacks [14] of delta lenses and the canonical pullback of R-algebras
[4]. Another is the connection between spans of delta lenses [9] and the categories of weak maps for an
AWFS [5]. The double category of delta lenses [11], which is naturally induced by the AWFS, provides a
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rich setting for the further study of the properties of delta lenses previously considered in a 1-categorical
setting [6, 15].
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A Appendix

In this section, we provide a proof of Theorem 17. The correspondence between JR-algebras and delta
lenses was first shown by Johnson and Rosebrugh [23, Proposition 3]; we reprove this correspondence in
our notation, and extend it to an isomorphism of categories. We refer the reader to Example 15 for an
explicit description of the category J f and the functor T f : J f → B.

Theorem 31. If C= Cat equipped with the discrete category comonad and the comprehensive factorisation
system, then there is an isomorphism of categories Lens∼=AlgJR(T,ν).

We prove this theorem in two parts: first defining the functor Lens→AlgJR(T,ν), then defining the
functor AlgJR(T,ν)→ Lens and showing that they are mutually inverse.

Proof. We begin by constructing a functor Lens→AlgJR(T,ν).
Given a delta lens ( f ,ϕ) : A→ B as in Definition 1, we define a functor p : J f → B whose assignment

on morphisms 〈1a,v〉 : (a,u1)→ (a,u2) is given below, where we recall that p(a,u) = cod(ϕ(a,u)).

a a

f a f a

b1 b2

u1 � u2

v

7−→ p(a,u1) p(a,u2)
ϕ(p(a,u1),v) (18)

This functor preserves identities and composition by the axioms (L2) and (L3) of a delta lens, respectively.
Moreover, the equation f ◦ p = T f from the left diagram of (7) is satisfied by axiom (L1). The equation
p◦S f = ιA from the diagram (8) also holds since S f (a) = (a,1 f a) and p(a,1 f a) = a by axiom (L2).

To verify the remaining condition for a JR-algebra given by the right diagram of (7), we first describe
the category JT f and the functors ν f ,〈p,1B〉 : JT f → J f .

The category JT f has objects given by triples (a ∈ A,u : f a→ b,u′ : b→ b′) and morphisms given by
triples 〈1a,1b,v〉 as depicted below. The functor ν f has an assignment on objects (a,u,u′) 7→ (a,u′ ◦u) and
an assignment on morphisms 〈1a,1b,v〉 7→ 〈1a,v〉, while the functor 〈p,1B〉 has corresponding assignments
on objects and morphisms given by (a,u,u′) 7→ (p(a,u),u′) and 〈1a,1b,v〉 7→ 〈1p(a,u),v〉 which are well-
defined by (L1). The equation p◦µ f = p◦ 〈p,1B〉 holds since p(a,u′ ◦u) = p(p(a,u),u′) by axiom (L3).
Therefore, we have a JR-algebra ( f , p) and the functor Lens→AlgJR(T,ν) is well-defined on objects.

a a

f a f a

b b

b′1 b′2

u u

u′1 � u′2

v

(19)

Consider a pair of delta lenses ( f ,ϕ) : A→ B and (g,ψ) : C→ D with corresponding JR-algebras
( f , p) and (g,q), respectively. Given a morphism of delta lenses 〈h,k〉 : ( f ,ϕ) → (g,ψ), we want
to show that there is a morphism of JR-algebras 〈h,k〉 : ( f , p)→ (g,q). First note that the functor
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J〈h,k〉 : J f → Jg has an assignment on objects (a,u) 7→ (ha,ku) and an assignment on morphisms
〈1a,v〉 7→ 〈1ha,kv〉. As we have hϕ(a,u) = ψ(ha,ku) by the definition of a morphism of delta lenses, it
follows that hp(a,u) = cod(hϕ(a,u)) = cod(ψ(ha,ku)) = q(ha,ku). A similar argument on morphisms
of E f establishes that q◦J〈h,k〉= h◦ p and thus the equation (9) for a morphism of JR-algebras holds.

Proof. We now construct a functor AlgJR(T,ν)→Lens and show that it is inverse to Lens→AlgJR(T,ν).
Given a JR-algebra determined by the pair of functors f : A→ B and p : J f → A, we define a delta

lens ( f ,ϕ) : A→ B whose lifting operation ϕ is given below, where p(a,1 f a) = a by (8).

a a

f a f a

f a b

1 f a u

u

7−→ p(a,1 f a) = a p(a,u)
p〈1a,u〉 (20)

By (8) on morphisms, it follows that axiom (L2) for a delta lens holds. By the left diagram of (7), it is
also immediate that axiom (L1) holds. For axiom (L3) to hold, we need to show that

p〈1a,v◦u〉= p〈1a,v〉 ◦ p〈1a,u〉= p〈1p(a,u),v〉 ◦ p〈1a,u〉.

This amounts to proving that the morphism p〈1a,v〉 : p(a,u)→ p(a,v ◦ u) is equal to the morphism
p〈1p(a,u),v〉 : p(p(a,u),1b)→ p(p(a,u),v), which follows directly from the right diagram in (7).

Given a morphism of JR-algebras 〈h,k〉 : ( f , p)→ (g,q), we have hp〈1a,u〉 = q〈1ha,ku〉 from (9).
Therefore there is a well-defined morphism 〈h,k〉 between the corresponding delta lenses.

To show that the functors Lens→AlgJR(T,ν) and AlgJR(T,ν)→ Lens are inverse, it is enough to
show it holds on the objects as the morphisms consist of the same data.

First consider a delta lens ( f ,ϕ) and define a functor p : J f → B as in (18). Applying this functor at a
morphism 〈1a,u〉 : (a,1 f a)→ (a,u) in J f , we obtain ϕ(p(a,1 f a),u) = ϕ(a,u) by (L2) as desired. Now
consider a JR-algebra ( f , p) and define a lifting operation ϕ for a delta lens as in (20). Defining a functor
p̂ : J f → A from this delta as in (18) and applying it to a morphism 〈1a,v〉 : (a,u1)→ (a,u2) we find that
p̂〈1a,v〉= p〈1p(a,u),v〉= p〈1a,v〉 by the right diagram in (7) as desired. This completes the proof.
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