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We further the theory of optics or “circuits-with-holes” to encompass premonoidal categories: mo-
noidal categories without the interchange law. Every premonoidal category gives rise to an effectful
category (i.e. a generalised Freyd-category) given by the embedding of the monoidal subcategory of
central morphisms. We introduce “pro-effectful” categories and show that optics for premonoidal
categories exhibit this structure.

Pro-effectful categories are the non-representable versions of effectful categories, akin to the
generalisation of monoidal to promonoidal categories. We extend a classical result of Day to this set-
ting, showing an equivalence between pro-effectful structures on a category and effectful structures
on its free tight cocompletion. We also demonstrate that pro-effectful categories are equivalent to
prostrong promonads.

1 Introduction

Monoidal categories play a central role in many categorical models, from programming semantics [4], to
quantum theory [2, 16], to electrical circuits [9], for they provide the necessary mathematical structure to
describe the interaction of systems over time (by composition) and space (by tensor product). Monoidal
categories have a graphical calculus known as string diagrams [30] which provides a formalisation of
circuit diagrams. There has been much interest in studying the categorical structure of circuits-with-
holes [13, 32, 49] over a given monoidal category C ; that is, incomplete diagrams in C .
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Figure 1: Optics equivalence relation.

The categorical methods required to describe these circuits-
with-holes have their roots in the study of strong profunctors, or
Tambara modules [47, 7]. These modules are the algebras for a
certain promonad [35] with the resulting category of free algebras
known as the category of optics by the functional programming
community, where it is used to model various bidirectional data
accessors [15, 40, 41]. The category Optic(C ) has objects given
by pairs (a,a′) of objects of C and homs Optic(C )((a,a′),(b,b′))
given by the quotiented sets of the form in Figure 1 [35, 40, 15].
The idea is to produce a category of holes in circuits from C ,
where two circuits are equivalent if they can be rewritten into each
other by sliding boxes. This equivalence relation is handled by the coend

∫ xy C (a,x⊗ b⊗ y)×C (x⊗
b′⊗y,a′). Outside of functional programming, this category has been suggested as a way to model holes
in general monoidal categories [42]. In particular, incomplete diagrams have applications in quantum
theory where they are known as combs [13] and capture a certain subset of the more general quantum
supermaps [14]: optics have been suggested to formalise these structures [25].

What is still missing is a full description of optics for premonoidal categories. Informally, pre-
monoidal categories are like monoidal categories but dropping the interchange law so that in general
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2 Optics for Premonoidal Categories

(1⊗ f )(g⊗ 1) 6= (g⊗ 1)(1⊗ f ). Such categories are useful in the modelling of computational side-
effects and it was with precisely this motivation that Power and Robinson introduced them [38]. This
manuscript is indebted to the research into premonoidal categories [29, 33, 36, 39, 45].

Since not all morphisms in a premonoidal category interchange, there is now an additional subtlety to
formalising optics. The coends that are usually used to quotient to allow for the sliding of morphisms can
now only be taken over the centre ZC of the premonoidal category C - the wide monoidal subcategory
comprised of the morphisms that interchange with all others.
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Figure 2: Left: ⊗H , Right: ⊗V .
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Figure 3: Premonoidal optics equivalence relation.

In this article, we will develop the machinery required to deal with optics for premonoidal categories.
There is a category OpticZC (C ) with objects given by pairs (a,a′) of those of C and homs given by the
sets of the form in Figure 3, handled by the coend

∫ xy∈ZC C (a,x⊗ b⊗ y)×C (x⊗ b′⊗ y,a′). While
premonoidal optics can be seen to be a special case of generalised optics for an actegory [15, 40], the full
monoidal-like structure of the category has not been discussed before. Optics over a monoidal category
C are equipped with two promonoidal tensor products, ⊗H ,⊗V : Optic(C )×Optic(C ) −7→ Optic(C ),
which capture the horizontal and vertical composition of holes (see Figure 2). These two tensors interact
to make Optic(C ) into a produoidal category [22].

Over a premonoidal category C we might hope to equip OpticZC (C ) with two tensors analogous to
those in Figure 2. While the vertical tensor ⊗V poses no immediate difficulties, the horizontal tensor ⊗H

does: we cannot expect this to be promonoidal because C does not satisfy interchange. This requires
us to introduce the notion of a pro-effectful category which combines the structures of premonoidal and
promonoidal categories together – this is our main technical contribution.

We prove that pro-effectful categories are equivalently: (i) prostrong promonads; (ii) biproactegories
(two-sided actions in the category of profunctors) which suitably extend a canonical action on the centre
of the category; and (iii) pseudomonoids in the bicategory of tight V 2-profunctors.

Each of these gives a different perspective on pro-effectful categories, connecting them, respectively,
with monads; the action definition of Freyd-categories given by Levy [33]; the pseudomonoid definition
of effectful categories given by Román [43] and the work on closed effectful categories due to Power
[36, 37]. In particular, this final perspective demonstrates that pro-effectful categories are equivalent
to closed effectful categories on the free tight cocompletion, where the effectful structure is given by a
version of Day convolution.

Finally, there is an additional challenge with premonoidal optics: there is the category Optic(ZC ) of
optics over the monoidal centre and an embedding, Optic(ZC ) −→ OpticZC (C ), of these central optics
into the optics over the entire premonoidal category. Optic(ZC ) is equipped with the two promonoidal
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structures, ⊗H and ⊗V , and we would like to understand how these behave in relation to any tensors
we can define on OpticZC (C ). This requires us to keep track of the centre and understand fully how it
behaves in relation to the rest of the premonoidal category.

2 Premonoidal and Effectful Categories

Let us start by formally defining premonoidal categories enriched over a fixed cosmos V , taken to be
bicomplete and closed symmetric monoidal. We take some space to spell this out as there are some tech-
nicalities involved which do not appear to have been explicitly discussed elsewhere. Unless otherwise
indicated “category,” “functor,” “natural transformation” etc. should be taken to mean V -category etc.
We write ⊗ for the tensor of V and for the enriched tensor of categories [31].

Definition 1 (Binoidal Category). A category C is binoidal when, for each object a, it is equipped with
a pair of functors an− : C −→ C and −oa : C −→ C such that for all a and b, anb = aob.

In the case of V = Set, the previous definition is equivalent to the one in terms of the funny tensor
product [23, 48]. 1 We now generalize the notion of central morphism to the enriched case.

Definition 2 (Centre Piece). Let C be a binoidal category. A centre piece at objects (a,b) is an object
U(a,b) in V , endowed with an arrow ι : U(a,b)−→ C (a,b), such that for any objects (c,d) the following
diagrams commute.

U(a,b)⊗C (c,d) C (a,b)⊗C (c,d) C (ao c,bo c)⊗C (bn c,bnd)

C (a,b)⊗C (c,d) C (aod,bod)⊗C (an c,and) C (ao c,bod)

ι⊗1

ι⊗1

(−oc)⊗(bn−)

◦σ

(−od)⊗(an−) ◦

C (c,d)⊗U(a,b) C (c,d)⊗C (a,b) C (coa,d oa)⊗C (d na,d nb)

C (c,d)⊗C (a,b) C (cob,d ob)⊗C (cna,cnb) C (coa,d ob)

1⊗ι

1⊗ι

(−oa)⊗(dn−)

◦σ

(−ob)⊗(cn−) ◦

A morphism of centre pieces at (a,b) is an arrow u : V (a,b)−→U(a,b) in V such that ιU ◦u = ιV . Centre
pieces and morphisms of centre pieces form a category CP(a,b).

Definition 3 (Centre). Let C be binoidal. The centre of C at objects (a,b) is the universal centre piece,
ι : ZC (a,b)−→ C (a,b), such that all other centre pieces factorise uniquely through it.

Universal centre pieces assemble to give a category ZC with the same objects as C and with hom-
objects given by the universal centre pieces. Composition and identities are inherited from C because
(1) and ja are centre pieces and thus factor via the centre.

Proposition 1. The arrow (1), representing composition inherited from C , is a center piece at (a,c).

ZC (b,c)⊗ZC (a,b) ι⊗ι−−→ C (b,c)⊗C (a,b) ◦−→ C (a,c) (1)

Furthermore, for each object a, the arrow ja : IV −→ C (a,a), representing the identities, is a centre piece
at (a,a). As a result, ZC is a category.

1We avoid that definition in the enriched case because it relies on the discrete category C0 of objects of a category C which
is ill-defined over arbitrary V .
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Proof. In Appendix A.1.

Finally we note that the ι assemble to give an identity on objects functor ZC −→ C .

Definition 4 (Central Natural Transformation). Let C be binoidal and F,G : D −→ C be two functors. A
natural transformation η : F −→ G is central when the components are central, so that we have a family
of morphisms ηa : IV −→ ZC (Fa,Ga) of V satisfying the naturality diagrams.

Binoidal categories give us the necessary machinery to define premonoidal categories.

Definition 5 (Premonoidal Category). A premonoidal category, C , is a binoidal category endowed with
an object i and central natural isomorphisms, (a⊗ b)⊗ c ∼= a⊗ (b⊗ c) and a⊗ i ∼= a ∼= i⊗ a, such that
the triangle and pentagon equations hold.

Definition 6 (Premonoidal Functor). A premonoidal functor F : C −→D between premonoidal categories
is a functor which maps central morphisms to central morphisms and which preserves the premonoidal
structure up to natural transformations Fa⊗ Fb −→ F(a⊗ b) and i −→ Fi subject to coherence condi-
tions like those for a monoidal functor. A premonoidal functor is strict when these transformations are
identities.

As we have just seen, enriched premonoidal categories are difficult to define - since the coherence
isomorphisms need to be central we are required to define binoidal categories first so that we can make
sense of this centrality. Even in the case V = Set, Cat fails to be a monoidal 2-category under the
funny tensor product because the funny tensor of natural transformations is not well-defined unless the
components are all central [38]. This prevents the swift and elegant definition “a premonoidal category
is a pseudomonoid in Cat�.”

Power realised that premonoidal categories are more algebraically well-defined when one shifts to
working with premonoidal categories with a specified subcategory of central morphisms [36]. We call
these effectful categories [43].

Definition 7 (Effectful Category). An effectful category consists of a monoidal category C0, a pre-
monoidal category C1 with the same objects as C0 and a strict, identity on objects, premonoidal functor
J : C0 −→ C1.

Remark. If C0 is cartesian, then an effectful category is known as a Freyd category [45, 33]. At least
one good reason to relax from requiring cartesian structure to arbitrary monoidal structure concerns
applications of effectful categories outside of computer science. For instance, there has been interest in
effectful structure for models of spacetime and quantum theory where products are not the canonical way
of taking joint systems [17, 26], and in the study of Petri nets [5].

Effectful categories can be seen as particular instances of actegories [33] - that is, a category with an
action by a monoidal category [6, 12]. An effectful category J : C0 −→ C1 specifies a left and right C0-
action on C1, making C1 into a C0-C0-biactegory. These actions n : C0⊗C1 −→ C1 and o : C1⊗C0 −→
C1, are special because they preserve the canonical actions of C0 on itself, i.e. J extends the action
J�=n(1⊗ J) and J�=o(J⊗1), and preserves the coherence isomorphisms.

Effectful categories are also precisely the same thing as strong promonads [27, 24, 43]. Given a
strong promonad T : C −7→ C there is a canonical premonoidal structure on the Kleisli category KlT
which on objects acts like the tensor of C . The free functor F : C −→ KlT then constitutes an effectful
category. Conversely, given an effectful category J : C0 −→ C1, there is a promonad C1(J−,J−) : C0 −7→
C0 which can be shown to be strong with strengths induced by the action of C0 on C1.
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Effectful Categories as Pseudomonoids

In this section, we show that V -enriched effectful categories can be seen as categories enriched in an
arrow category V 2 = [−→,V ], the category of arrows and commutative squares in V [37].

Proposition 2. Let V be a complete, cocomplete, closed symmetric monoidal category. Then V 2 is also
a complete, cocomplete, closed symmetric monoidal category and therefore constitutes a cosmos.

Proof. In Appendix A.2.

Since V 2 is a cosmos, we can consider categories enriched in V 2 [37]. A V 2-category consists of
a pair of categories C0 and C1 with the same objects, and an identity on objects functor J : C0 −→ C1.
A V 2-functor F : JC −→ JD consists of a pair of functors F0 : C0 −→ D0 and F1 : C1 −→ D1 such that
F1JC = JDF0. A V 2-natural transformation η : F ⇒ G between V 2-functors F,G : JC −→ JD consists
of natural transformations η0 : F0 ⇒ G0 and η1 : F1 ⇒ G1 with components that satisfy JD(η

0
c ) = η1

c .
When JD is an embedding, we can think of this transformation simply as having central components, in
D0.

There is a bicategory V 2-Cat of V 2-categories, V 2-functors and V 2-natural transformations. This
bicategory has an interesting tensor that arises as a slight modification of the funny tensor product.

Definition 8 (Funny Tensor of V 2-Categories). Given two V 2-categories JC and JD , their funny tensor
JC�D : C0⊗D0 −→ C1 � D1 is the identity on objects functor given by the diagonal of the following
pushout in V -Cat.

C0⊗D0 C1⊗D0

C0⊗D1 C1 �D1

JC⊗1

1⊗JD i0

i1

p
(2)

The pushout exists because V is cocomplete and thus V -Cat is also cocomplete [50]. Given V 2-functors
F : JA −→ JB and G : JC −→ JD their funny tensor F � G has components (F � G)0 = F0⊗G0 and
(F � G)1 = F1 � G1 given by the unique arrow induced by the pushout. The funny tensor is also well-
behaved on V 2-natural transformations because their components JD(η

0
c ) = η1

c are central and thus
interchange with all other morphisms in C �D .

Theorem 1. V 2-Cat is a monoidal 2-category under the funny tensor �.

Proof sketch. In Appendix A.3.

This leads to the main theorem of this section. Theorem 2 is equivalent to the result of Román [43]:
effectful categories are pseudomonoids in the bicategory of promonads, promonad homomorphisms and
promonad modifications.

Theorem 2. An effectful category is a pseudomonoid in V 2-Cat�.

Proof. In Appendix A.4.

Theorem 3. There is an equivalence of bicategories V 2-Cat� ∼= V -Promonad between the bicategories
of V 2-categories under the funny tensor product and the bicategory of promonads.

Proof sketch. The result follows upon unwinding the definitions in [43] and comparing with those of the
present section.
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3 Closed Effectful Categories

In this section, we turn our attention to the closure of effectful categories. Like for monoidal categories,
we still want an adjunction between tensoring and the internal-hom, but we only ask that this holds for
the centre.

Definition 9 (Closed Effectful Category [36]). An effectful category J : C0 −→ C1 is right-closed when
for each object X , J(−)⊗X : C0 −→ C1 has a right adjoint [X ,−] : C1 −→ C0. An effectful category is
left-closed when for each X , X ⊗ J(−) : C0 −→ C1 has a right adjoint. We say an effectful category is
closed if it is both left and right-closed.

Power proved the following result which generalises Day’s result that every monoidal category em-
beds into a closed monoidal category [19].

Theorem 4 ([36]). Every (small) effectful category embeds into a closed effectful category.

We say that an effectful category J : C0 −→ C1 is small when both C0 and C1 are small. One might
expect that the closed effectful category into which small J embeds would be given by the free V 2-
cocompletion [Jop,V 2]. To the contrary, this category does not have a non-trivial closed effectful struc-
ture. Power showed that the correct category to consider is given by the free tight cocompletion - that
is, the cocompletion in only V -colimits, not all weighted colimits. In the case of V = Set these are
precisely the “conical” colimits.

Theorem 5 ([37]). The free tight cocompletion of a small V 2-category J : C0 −→ C1 is the bijective on
objects functor LanL

Jop : Ĉ0 −→ C1 induced by the functor of LanJop : Ĉ0 −→ Ĉ1, via its canonical factori-
sation into a bijective on objects functor followed by a fully faithful functor (its bo-ff factorisation, see
Appendix A.5).

Remark. As a consequence, the following diagram commutes, giving a factorisation (yL,yR) of the
Yoneda embedding y : J −→ [Jop,V 2], via the free V -cocompletion.

C0 C1

Ĉ0 C1

[Jop,V 2]0 [Jop,V 2]1

J

yL
0

y0

yL
1

y1
LanL

Jop

yR
0 yR

1

The category C1 := Im(LanJop) has as objects, presheaves F : C op
0 −→ V . The hom C1(F,G), is given

by Ĉ1(LanJopF,LanJopG). The category C1 has another description.

Proposition 3. Let J : C0−→C1 be an effectful category with corresponding strong promonad T (−,−) :=
C1(J−,J−). Let C1 = Im(LanJop) be the category given by the bo-ff factorisation of LanJop . Then C1 is
isomorphic to the Kleisli category KlT̂ of the monad T̂ : Ĉ0 −→ Ĉ0 induced by T on the presheaf category.

Proof. The result follows by the adjunction between extension and restriction of presheaves along Jop.
It is spelt out in Appendix A.6.

We can describe the effectful structure on LanL
Jop as follows. The centre Ĉ0 is closed monoidal under

Day convolution while the premonoidal structure on C1 is given by the unique arrow induced by the
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universal property of the coend. That is, given η : LanJopF ⇒ LanJopG in C1 there is a unique arrow
giving the left side of the premonoidal structure (and similarly for the right side).

F H

J

=
F H

J η
=⇒

G H

J =
G H

J

(3)

We see that LanL
Jop factors through the centre Z(C1) of C1, for if we are given η : F⇒G and ε : H⇒K

there is a unique arrow making it clear that the interchange law holds.

F H

J
η⊗ε
==⇒

G K

J

The internal-hom [F,−] : C1 −→ Ĉ0 is given by the following presheaf which can be checked to be
right adjoint to LanL

Jop(−)⊗F by coend calculus (see Appendix A.7).

[F,G](−)∼=
∫

c∈C1

V
(
(LanJopF)(c),(LanJopG)(J−⊗c)

)

4 V 2-Profunctors

Let us now study the structure of V 2-profunctors P : Jop
D ⊗ JC −→ V 2. By the following result we are

able to unpack P into a pair of V -profunctors together with a natural transformation between them. The
V 2-natural transformations φ : P⇒ Q can also be similarly unpacked.

Proposition 4. Let P : Jop
D ⊗ JC −→ V 2 be a V 2-profunctor. Then P is a triple of:

1. a V -profunctor P0 : Dop
0 ⊗C0 −→ V ,

2. a V -profunctor P1 : Dop
1 ⊗C1 −→ V ,

3. a V -natural transformation η : P0⇒ P1(Jop⊗ J).

A V 2-natural transformation φ : P⇒ Q consists of V -natural transformations φ0 : P0 ⇒ Q0 and φ1 :
P1⇒ Q1 such that (φ1(Jop⊗ J))ηP = ηQφ0.

Proof. This follows by applying a V -enriched version of a result by Power [37, Prop. 24] to the functor
category [Jop

D ⊗ JC ,V 2]∼= Prof(JC ,JD).

The next proposition demonstrates that the coend of a V 2-profunctor P is given by the coends of P0
and P1 together with a canonical arrow between them.

Proposition 5. Let P : Jop⊗ J −→ V 2 be a V 2-endoprofunctor. Then the coend
∫ c P(c,c) is given by the

arrow
∫ c P0(c,c)−→

∫ c P1(c,c) induced by η and the adjunction yJ a yJ in V -Prof.

Proof. In Appendix A.8.
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V 2-endoprofunctors and the V 2-natural transformations assemble into a V 2-category [Jop⊗J,V 2]∼=
Prof(J,J). The category Prof(J,J)0 consists of the V 2-profunctors and V 2-natural transformations as
outlined in Proposition 4, while Prof(J,J)1 has homs consisting of only the components φ1 of the natural
transformations. The identity on objects functor Prof(J,J)0 −→ Prof(J,J)1 forgets the φ0 components.

As with any other category of endoprofunctors Prof(J,J) has a closed monoidal structure given by
composition of the profunctors. Given P = (P0,P1,ηP) and Q = (Q0,Q1,ηQ), their composition is given
by QP = (Q0P0,Q1P1,ηQP) - we compose the underlying profunctors and take ηQP to be given by∫ c

Q(−,c)⊗P(c,−)
∫

ηQ⊗ηP
=====⇒

∫ c∈C0

Q(J−,Jc)⊗P(Jc,J−) yJayJ

===⇒
∫ c∈C1

Q(J−,c)⊗P(c,J−).

4.1 Tight Profunctors

In Section 3 we saw that effectful structure on J : C0 −→ C1 induced a closed effectful structure on the
free tight cocompletion of J. It turns out that this effectful structure on J is only a sufficient and not
necessary condition for closed effectful structure on the free tight cocompletion of J. Analogously to the
case of monoidal categories where, in order for the presheaf category Ĉ to be closed monoidal it is only
necessary that the category C is promonoidal [19, 18], we only require J to be a “pro-effectful” category.
To define these categories we need firstly to study the class of profunctors which factor through the tight
cocompletion. This will be the aim of this section.

To define pro-effectful categories we would like to replace the functors of a effectful category with
profunctors, but we have a problem: we cannot consider arbitrary V 2-profunctors P : Jop

D ⊗ JC −→ V 2

because these assign arbitrary presheaves Jop
D −→ V 2 to objects of JC . These presheaves will not in

general be contained in the free tight cocompletion. Thus, we need a restricted class of profunctors,
those that we call the tight profunctors.

Definition 10 (Tight V 2-Profunctor). A tight V 2-profunctor P : JC −7→ JD is a V 2-functor P : JC −→ JD ,
where JD

∼= LanL
Jop
D

is the free tight cocompletion of JD .

Similarly to how a profunctor P : C −7→ D is equivalently a cocontinuous functor between free
cocompletions P̂ : Ĉ −→ D̂ , tight V 2-profunctors are tightly cocontinuous functors between free tight
cocompletions.

Definition 11 (Tightly Cocontinuous Functor). A V 2-functor F : JC −→ JD between tightly cocomplete
categories is tightly cocontinuous if it preserves all tight colimits.

Theorem 6 ([31]). Let JC be the closure of JC in [Jop
C ,V 2] under tight colimits and write yL : JC −→ JC

for the inclusion. Then for tightly cocomplete JD , there is an equivalence

LanyL : [JC ,JD ]∼= Coconttight(JC ,JD)

where the right-hand is the category of tightly cocontinuous functors. This exhibits JC as the free tight
cocompletion of JC .

Indeed, yL is fully faithful (see Appendix A.9), so that there is a natural isomorphism F ∼=(LanyLF)yL.
Consequently, we can think of a tight V 2-profunctor P : JC −→ JD as a tightly cocontinuous functor
P̃ : JC −→ JD . We can now define the following bicategory of tight V 2-profunctors.

Definition 12. Denote by V 2-ProfTight the bicategory that has

• 0-cells the V 2-categories J : C0 −→ C1,
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• 1-cells, P : JC −7→ JD , the tight V 2-profunctors P : JC −→ JD ,

• 2-cells the V 2-natural transformations.

Composition of 1-cells is given by taking the left Kan extension along yL and composing the functors we
obtain Q◦P = (LanyLQ)P.

Remark. We could also have defined tight V 2-profunctors JC −→ JD as usual V 2-profunctors JC −→
[Jop

D ,V 2] that factorise via the embedding yR : JD −→ [Jop
D ,V 2]. Their usual composition as profunctors

coincides (up to natural isomorphism) with the composition defined previously because yR is fully faithful
(see Appendix A.9) and thus the unit of the Kan extension along yR is an isomorphism, F ∼= (LanyRF)yR.
It follows that

Q◦P = (LanyQ)P = (LanyRyLQ)P∼= (LanyRLanyLQ)P = (LanyRLanyLQ)yRP′ ∼= (LanyLQ)P′.

Proposition 6 (External Tensor Product). Let JC and JD be V 2-categories and write JC and JD be their
free tight cocompletions. Then there is a V 2-functor

⊗̂ : JC � JD −→ JC�D (4)

with components that act on objects as (F⊗̂G)(c,d) := Fc⊗Gd.

Proof. In Appendix A.10.

V 2-ProfTight has an interesting tensor product given by generalising the funny tensor product.

Definition 13 (Funny Tensor Product of Tight V 2-Profunctors). On categories the funny tensor acts like
in V 2-Cat. On tight V 2-profunctors P : JA −→ JB and Q : JC −→ JD we define their funny tensor to be
given by their funny tensor in V 2-Cat composed with the external tensor of free tight cocompletions (4):

JA � JC JB � JD JB�D
P�Q ⊗̂

Theorem 7. V 2-ProfTight is a monoidal bicategory under the funny tensor product.

5 Pro-effectful Categories

Definition 14. A pro-effectful category is a pseudomonoid in V 2-ProfTight� . Explicitly, a pro-effectful
category JC is a V 2-category equipped with

• a tensor product tight V 2-profunctor P : JC�C −7→ JC ,

• and a unit tight V 2-profunctor I : 1−7→ JC ,

together with V 2-natural isomorphisms P(P� 1)
α∼= P(1� P) and P(I � 1)

λ∼= 1
ρ∼= P(1� I) such that the

triangle and pentagon equations hold.

Like their effectful counterparts, pro-effectful categories also have an “actegorical definition” - they
are a particular instance of a category equipped with an action by a promonoidal category. This requires
us firstly to weaken actegories to proactegories.
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Definition 15 (Proactegory). A left proactegory is a promonoidal category (C0,P, I) and a category C1
equipped with a left proaction by C0, that is, a profunctor L : C0⊗C1 −7→ C1 and natural isomorphisms∫ X∈C1

L(A,B,X)⊗L(X ,C,D)
a∼=
∫ X∈C0

L(A,X ,D)⊗P(X ,B,C),
∫ X∈C0

L(A,X ,B)⊗ I(X)
l∼= C1(A,B),

satisfying similar coherence diagrams as for an actegory. A biproactegory is simultaneously a left and
right proactegory with an additional natural isomorphism∫ X

R(D,X ,C)⊗L(X ,A,B)
b∼=
∫ X

L(D,A,X)⊗R(X ,B,C)

satisfying similar coherences as for a biactegory.

The following result generalises the equivalence between effectful categories and certain actegories
[33] to the pro-effectful case.

Proposition 7. A pro-effectful category is equivalently the following data:

• a promonoidal category (C0,P0, I0),

• a category C1 with the same objects as C0 and an identity on objects functor J : C0 −→ C1,

• left and right C0-proactions on C1, PL
1 : C0⊗C1 −7→ C1 and PR

1 : C1⊗C0 −7→ C1, which extend the
canonical proactions of C0 on itself:

C0⊗C0 C0

C0⊗C1 C1

P0p
1⊗yJ p yJp

PL
1

p

C0⊗C0 C0

C1⊗C0 C1

P0p
yJ⊗1p yJp

PR
1

p

(5)

• a natural isomorphism PR
1 (P

L
1 ⊗1)∼= PL

1 (1⊗PR
1 ) making C1 into a C0-C0-biproactegory.

Proof. In Appendix A.11.

The next proposition generalises the equivalence between effectful categories and strong promonads
[27, 24, 43] to the pro-effectful case. The proof methods are related to those for promonoidal monads in
[20].

Proposition 8. A pro-effectful category is equivalently a prostrong promonad (see Definition 20).

Proof. In Appendix A.12.

Pro-effectful categories are also exactly what is required to place a closed effectful structure on
the free tight cocompletion of a V 2-category. This generalises Day’s theorem [19, 18] from monoidal to
effectful categories, thus also generalising the result of Power on closed effectful embeddings of effectful
categories [36, 37]. The result follows by generalising the methods of Day’s original proof, and from the
folklore results regarding Day convolution for actegories, see [28, 11].

Theorem 8. There is an equivalence between pro-effectful structures on J and closed effectful structures
on the free tight cocompletion J = LanL

Jop .

Proof. In Appendix A.13.
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Finally, we note some connections between pro-effectful categories and the premulticategories of
Staton and Levy [45], which generalise multicategories by dropping the interchange law. Just as how
promonoidal categories are examples of (co)multicategories [21], pro-effectful categories are examples
of (co)premulticategories. Given a pro-effectful category J : C0 −→ C1, there is a co-premulticategory C
with objects given by those of C1. For a,b ∈ C the class of arrows is given by C(a;b) := C1(a,b) and
for a,b,c ∈ C the class of arrows is given by C(a;b,c) := P1(a,b,c). The rest of the classes of arrows are
defined inductively.

It is worth noting that there exist examples of pro-effectful categories which provide non-degenerate
examples of premulticategories where the interchange law does not hold (in contrast to promonoidal and
monoidal categories which are multicategories) and where the “tensor” is not representable (in contrast
to monoidal and premonoidal categories). For instance, the premonoidal optics introduced in the next
section are an example of such a category.

6 Premonoidal Optics

In a seminal work on optics, Riley [40] introduced the notion of “effectful optics”: optics over the Kleisli
category of a strong monad. These optics allow the emergence of side-effects, and extend the optics
of pure functional programming to other programming languages with effects; with a similar purpose,
Abou-Saleh et al [1] have introduced “monadic lenses”. More recently, much applied category theory
has been written about optics that create effects in different categories [8, 10, 15, 44].

We introduce a novel definition of optic over an effectful category that justifies this previous termi-
nology: optics over the Kleisli category of a strong monad are particular cases of our effectful optics.
We also introduce a proeffectful algebra over them that had been previously neglected. In this section we
will present the category of optics over a premonoidal category and outline its two tensor-like structures,
analogous to those in Figure 2.

Suppose we fix a premonoidal category C and write J : ZC −→ C for the inclusion of the centre.
There is a V 2-category Optic(J) with objects given by pairs a := (a,a′) of those of J, i.e. pairs of those
of the underlying premonoidal category C . The homs are given by

∫ xy ZC (a,x⊗ b⊗ y)⊗ZC (x⊗ b′⊗
y,a′) −→

∫ xy∈ZC C (a,x⊗ b⊗ y)⊗C (x⊗ b′⊗ y,a′), as in Figure 4. Thus Optic(J)0 = Optic(ZC ) is the
usual category of optics over the centre and Optic(J)1 = OpticZC (C ) is the category of optics given
by the action of the centre ZC on the whole premonoidal category C . The identity on objects functor
Optic(ZC )−→ OpticZC (C ) is the one induced by J.

Theorem 9. Optic(J) is a promonoidal V 2-category. The V 2-profunctors forming the tensor product
P : Optic(J)⊗Optic(J) −7→ Optic(J) and unit I : 1 −7→ Optic(J) have components given in Figures 5
and 6. These are explicitly,

P0(c,a,b) =
∫ xx′yy′

ZC (c,x⊗a⊗ x′)⊗ZC (x⊗a′⊗ x′,y⊗b⊗ y′)⊗ZC (y⊗b′⊗ y′,c′),

P1(c,a,b) =
∫ xx′yy′∈ZC

C (c,x⊗a⊗ x′)⊗C (x⊗a′⊗ x′,y⊗b⊗ y′)⊗C (y⊗b′⊗ y′,c′),

I0(a) = ZC (a,a′), I1(a) = C (a,a′).

Proof. In Appendix A.14.
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g

f

a

b
b′

a′

−→

g

f

a

b
b′

a′

Figure 4: Homs.

f

a′

a

−→ f

a′

a

Figure 5: Promonoidal unit I.

h

g

f

a′
a

b
b′

c′

c

−→

h

g

f

a′
a

b
b′

c′

c

Figure 6: Promonoidal tensor P.

Now let us turn our attention to another tensor-like structure on Optic1ZC
(J), this one induced by the

premonoidal structure on C .
Theorem 10. Optic(J) is a pro-effectful category. The tight V 2-profunctors forming the tensor product
P : Optic(J)⊗Optic(J)−→Optic(J) and unit I : 1−→Optic(J) have components which act on objects as,

P0(c,a,b) = P1(c,a,b) =
∫ xyz

ZC (c,x⊗a⊗ y⊗b⊗ z)⊗ZC (x⊗a′⊗ y⊗b′⊗ z,c′),

I0(a) = I1(a) = ZC (a,a′).
(6)

Proof. In Appendix A.15.

On the homs of ZC , P0 and I0 act in the expected way, essentially by nesting of optics. On the homs
of C , P1 and I1 act somewhat unusually. Formally non-central optics are sent to natural transformations
between left Kan extensions of the expressions in (6), that is between presheaves of the form:

(LanJop⊗JP0)(c,a,b)∼=
∫ wvxyz

C (c,Jw)⊗ZC (w,x⊗a⊗ y⊗b⊗ z)⊗ZC (x⊗a′⊗ y⊗b′⊗ z,v)⊗C (Jv,c′)

∼=
∫ xyz∈ZC

C (c,x⊗a⊗ y⊗b⊗ z)⊗C (x⊗a′⊗ y⊗b′⊗ z,c′)

(LanJop⊗JI0)(a)∼=
∫ xy

C (a,Jx)⊗ZC (x,y)⊗C (Jy,a′)∼=
∫ x∈ZC

C (a,x)⊗C (x,a′)

This justifies thinking of the pro-effectful structure as having the components described in Figures 7 and
8.

f

g

a
a′

b
b′

c

c′

−→

f

g

a
a′

b
b′

c

c′

Figure 7: Pro-effectful tensor.

f

a′

a

−→ f

a′

a

Figure 8: Pro-effectful unit.
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A Proofs

A.1 Proof of Proposition 1

Proof. Ignoring associativity isomorphisms, the following diagram commutes for any x and y, showing
that the arrow (1) is a centre piece at (a,c).
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An analogous diagram also commutes for the other interchange law. As a result ◦(ι ⊗ ι) factorises
uniquely via the universal centre piece. This gives us a composition operation for ZC , say •, such that
◦(ι⊗ ι) = ι•. Composition in ZC is associative because the following diagram commutes.

(ZC (c,d)⊗ZC (b,c))
⊗ZC (a,b)

ZC (c,d)⊗
(ZC (b,c)⊗ZC (a,b))

(C (c,d)⊗C (b,c))⊗C (a,b) C (c,d)⊗ (C (b,c)⊗C (a,b))

C (b,c)⊗C (a,b) C (a,d) C (c,d)⊗C (a,c)

ZC (b,c)⊗ZC (a,b) ZC (a,d) ZC (c,d)⊗ZC (a,c)

(ι⊗ι)⊗ι

•⊗1

α

1⊗•

ι⊗(ι⊗ι)

◦⊗1

α

1⊗◦
◦ ◦

ι⊗ι

•

ι
ι⊗ι

•

The following diagram commutes for all c,d, showing that ja is a centre piece at (a,a).

I⊗C (c,d) C (a,a)⊗C (c,d) C (ac,ac)⊗C (ac,ad)

C (a,a)⊗C (c,d) I⊗C (ac,ad) C (ac,ad)⊗ I C (ac,ad)⊗C (ac,ac)

C (ad,ad)⊗C (ac,ad) C (ac,ad)

ja⊗1

ja⊗1
1⊗(an−)

(−oc)⊗(an−)

σ

(−od)⊗(an−)

σ

jaoc⊗1

jaod⊗1 λ

1⊗ jaoc

ρ
◦

◦

A similar diagram commutes for the other interchange law. As a result ja factorises uniquely via the
universal centre piece as ja = ι j′a. Finally, note that the following diagram commutes showing the left
unit law holds for composition in ZC .

ZC (b,b)⊗ZC (a,b) ZC (a,b)

C (b,b)⊗C (a,b) C (a,b)

I⊗C (a,b) C (a,b)

I⊗ZC (a,b) ZC (a,b)

ι⊗ι

•

ι

◦

jb⊗1

λ

1j′b⊗1

1⊗ι

λ

1

ι

The right unit law is very similar.
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A.2 Proof of Proposition 2

Proof. The category V 2 inherits a symmetric monoidal structure from V . On objects, which are arrows
of V , this monoidal structure acts by

(a0
f−→ a1)⊗ (b0

g−→ b1) := a0⊗b0
f⊗g−−→ a1⊗b1.

On morphisms, which are squares of V , it acts in an analogous way.

Now, consider three objects of V 2, say a0
f−→ a1, b0

g−→ b1 and c0
h−→ c1. We aim to construct the

internal-hom and demonstrate the natural isomorphism V 2( f ⊗ g,h) ∼= V 2( f , [g,h]). Consider the fol-
lowing pullback in V , which exists because V is complete.

V (b0,c0)×V (b0,c1) V (b1,c1) V (b0,c0)

V (b1,c1) V (b0,c1)

p1

p0

y
V (1,h)

V (g,1)

Let us now demonstrate that the internal-hom is given by the projection out of the pullback, [g,h] = p1.
To give an arrow z : f −→ p1 of V 2 is to give a pair of arrows such that the following square commutes,

a0 a1

V (b0,c0)×V (b0,c1) V (b1,c1) V (b1,c1)

f

z0 z1

p1

(7)

To give z0 is to give z00 := p0z0 : a0 −→ V (b0,c0) and z01 := p1z0 : a0 −→ V (b1,c1) such that V (1,h)z00 =
V (g,1)z01. To make (7) commute is to ask z01 = z1 f .

Under the adjunction due to the closure of V , we now have z∗00 : a0⊗b0 −→ c0 and z∗01 : a0⊗b1 −→ c1
such that hz∗00 = z∗01(1⊗g). Also from z1 we get a z∗1 : a1⊗b1 −→ c1 such that z∗1( f ⊗1) = z∗01. As a result
we find hz∗00 = z∗1( f ⊗g), so that z is equivalent to giving z∗ : f ⊗g−→ h.

Finally, the completeness and cocompleteness of V 2 are inherited from V , pointwise.

A.3 Proof of Theorem 1

Proof sketch. The behaviour of the funny tensor on functors is encapsulated by the following cube.

B0⊗D0 B1⊗D0

A0⊗C0 A1⊗C0

B0⊗D1 B1 �D1

A0⊗C1 A1 � C1

F0⊗G0

F1⊗G0

p

F0⊗G1

F1�G1p

Functoriality of � on 1-cells follows by pasting of cubes and the uniqueness of the arrows induced by
the pushout.

Explicitly, we have (α : F ⇒ F ′) � (β : G⇒ G′) has components (α � β )0
cd = (α0

c ,β 0
d ) and (α �

β )1
cd = (α1

c ,β 1
d ) = (Jα0

c ,Jβ 0
d ). Naturality of this transformation follows from naturality of α and β and

from the centrality of the components.
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A.4 Proof of Theorem 2

Proof. A pseudomonoid in V 2-Cat� consists of a V 2-category J : C0 −→ C1 equipped with V 2-functors
� : J � J −→ J and I : 1−→ J, such that there are V 2-natural isomorphisms

�(�⊗1)
α∼=�(1⊗�) and � (I⊗1)

λ∼= 1
ρ∼=�(1⊗ I).

Note that � consists of two functors �0 : C0⊗C0 −→ C0 and �1 : C1 � C1 −→ C1 such that J�0 =
⊗1JC�C . �0 together with I0 and the natural isomorphisms α0,ρ0 and λ0, give a monoidal structure on
C0.

The C0-biaction on C1 is given by the compositions n := �i1 and o := �i0. That J preserves
the canonical actions given by ⊗0 on C0 follows by the diagram (2) and the equality J⊗0 = ⊗1JC�C ,
together with the fact that α1,ρ1 and λ1 have components in the image of J. The coherence equations
of the biaction are a consequence of those of α1,ρ1 and λ1: for instance α1 is a natural isomorphism
between functors with type C1 � C1 � C1 −→ C1. This amounts to “separate” naturality in each C1 of the
domain which in turns induces the left, bimodule and right coherences for the biaction.

A.5 Bijective on Objects-Fully Faithful (bo-ff) Factorisations

Proposition 9. Any V -functor F : C −→D factorises as the composition of a bijective-on-objects functor
and a fully-faithful functor.

Proof. Define ImF to be the V -category with objects given by those of C and hom-objects given by
ImF(a,b) := D(Fa,Fb). Its composition and identities are inherited from D . The V -functor F now
factorises as the composition of FL : C −→ ImF and FR : ImF −→D , where the V -functor FL is identity
on objects and on homs, FL

ab : C (a,b) −→ ImF(a,b) is given by Fab; and the V -functor FR acts as F on
objects, and on homs, FR

ab : ImF(a,b)−→D(Fa,Fb) is given by 1D(Fa,Fb).

A.6 Proof of Proposition 3

Proof. The promonad T : C0 −7→ C0 induces a monad T̂ : Ĉ0 −→ Ĉ0 given by the cocontinuous functor
corresponding to the profunctor T . By definition, the Kleisli category KlT̂ has as objects presheaves
F : C op

0 −→ V while the hom KlT̂ (F,G) is given by Ĉ0(F, T̂ G).
We see that

(T̂ G)(−)∼=
∫ x

T (−,x)⊗Gx =
∫ x

C1(J−,Jx)⊗Gx∼= (LanJopG)(J−)

There is an adjunction between extension and restriction of presheaves:

Nat(F, T̂ G)∼= Nat(F,(LanJopG)(J−))∼=
∫

x
V (Fx,(LanJopG)(Jx))

∼=
∫

x
V

(
Fx,

∫
y
V
(
C1(y,Jx),(LanJopG)(y)

))
∼=
∫

xy
V
(
Fx⊗C1(y,Jx),(LanJopG)(y)

)
∼=
∫

y
V

(∫ x
C1(y,Jx)⊗Fx,(LanJopG)(y)

)
∼= Nat(LanJopF,LanJopG)
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Thus to give a natural transformation F ⇒ T̂ G is equivalent to giving one LanJopF ⇒ LanJopG. This
demonstrates that C1 ∼= KlT̂

A.7 Proof of Closure of LanL
Jop

Proof.

Ĉ0(F, [G,H])∼=
∫

c∈C0

V
(
Fc, [G,H](c)

)
∼=
∫

c∈C0,d∈C1

V

(
Fc,V

(
(LanJopG)(d),(LanJopH)(Jc⊗d)

))
∼=
∫

c∈C0,d∈C1

V

(
Fc⊗ (LanJopG)(d),(LanJopH)(Jc⊗d)

)
∼=
∫

c∈C0,d,d′∈C1

V

(
Fc⊗ (LanJopG)(d)⊗C1(d′,Jc⊗d),(LanJopH)(d′)

)
∼=
∫

d′∈C1

V

(∫ c,c′∈C0,d∈C1

Fc⊗Gc′⊗C1(d,Jc′)⊗C1(d′,Jc⊗d),(LanJopH)(d′)
)

∼=
∫

d′∈C1

V

(
(LanJop(F ? G))(d′),(LanJopH)(d′)

)
∼= C1(F⊗G,H)

Left-closure of LanL
Jop follows similarly.

A.8 Proof of Proposition 5

Proof. Suppose we have a V 2-extranatural family wc : P(c,c) −→ d. Then we have the following com-
mutative diagram:

C1(c,c′)⊗P1(c′,c) P1(c′,c′)

C0(c,c′)⊗P0(c′,c) P0(c′,c′)

P0(c,c) d0

P1(c,c) d1

w1
c′

J⊗ηc′c

w0
c′

ηc′c′

w0
c

ηcc

d

w1
c

In particular, the families w0
c : P0(c,c)−→ d0 and w1

c : P1(c,c)−→ d1 are V -extranatural and thus factorise
via their respective coends giving arrows

∫ c P0(c,c) −→ d0 and
∫ c P1(c,c) −→ d1 making the obvious dia-

grams commute. Now note that the arrows P0(c,c)
ηcc−→ P1(c,c)

coprc−−−→
∫ c P1(c,c) are V -extranatural, this

induces a arrow
∫ c P0(c,c)−→

∫ c P1(c,c).
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A.9 Proof yL and yR are Fully-Faithful

Proof. Fix J : C0 −→ C1. We start with yL : J −→ J which acts as:

c 7→ C0(−,c)

( f : c−→ c′) ∈ C0
yL

07→ C0(−, f ) ∈ Ĉ0

( f : c−→ c′) ∈ C1
yL

17→ C1(−, f ) ∈ C1

by the Yoneda lemma it is clear that this is both full and faithful.
Now consider yR : J −→ Ĵ which acts as:

(F : C0 −→ V ) 7→ (F,LanJopF,ε : F ⇒ (LanJopF)J)

(η : F ⇒ G) ∈ Ĉ0
yR

07→ (η ,LanJopη)

(η : F ⇒ G) ∈ C1
yR

17→ η

It is clear to see that yR
1 is fully-faithful because the hom of [Jop,V 2]1 is precisely given by the natural

transformations between left Kan extensions, LanJopF⇒ LanJopG. To see that yR
0 is fully-faithful we note

that an arrow (F,LanJopF,εF)−→ (G,LanJopG,εG) is given by a pair of natural transformations η0 : F ⇒
η1 and η1 : LanJopF ⇒ LanJopG such that (η1J)εF = εGη0. Once η0 is chosen, then the η1 satisfying
this equality is uniquely determined by the universal property of the left Kan extension.

A.10 Proof of Proposition 6

Proof. To give (4) is to give a pair of functors such that the following square commutes:

Ĉ0⊗ D̂0 C1 �D1

Ĉ0⊗D0 C1 �D1

⊗̂0 ⊗̂1

LanL
Jop
C�D

The tensor ⊗̂0 acts on objects following the formula (F⊗̂G)(c,d) := Fc⊗Gd and on morphisms in the
obvious way. The tensor ⊗̂1 also acts following the same formula, note that a morphism of C1 � D1 is
a free composition of natural transformations α : LanJop

C
F ⇒ LanJop

C
F ′ and β : LanJop

D
G⇒ LanJop

D
G′ with

(1;β )(α;1) 6= (α;1)(1;β ) in general. Each such arrow induces a natural transformation LanJop
C�D

(F ⊗
G)⇒ LanJop

C�D
(F ′⊗G′), for instance:

LanJop
C�D

(F⊗G)∼= Laniop
1
(LanJop

C
F⊗G)

Laniop
1
(α⊗1)

=======⇒ Laniop
1
(LanJop

C
F ′⊗G)

∼= Laniop
0
(F ′⊗LanJop

D
G)

Laniop
0
(1⊗β )

=======⇒ Laniop
0
(F ′⊗LanJop

D
G′)

∼= LanJop
C�D

(F ′⊗G′)
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A.11 Proof of Proposition 7

Proof. Fix a pro-effectful category (J,P, I). J is a V 2-category so we have two categories C0 and C1
with the same objects and an identity on objects functor J : C0 −→ C1.

The tight V 2-profunctor P : JC�C −7→ JC consists of a profunctor P0 : C0⊗C0 −7→ C0 and a functor
P1 : C1 � C1 −→ C1. Similarly, the tight V 2-profunctor I : 1−7→ JC consists of presheaves I0 : C op

0 −→ V
and I1 = LanJopI0 : C op

1 −→ V . (P0, I0) induce a promonoidal structure on C0.
P1 induces the left and right proactions of C0 on C1. Starting with the left proaction, P1 induces a

functor yR
1 P1i1 =: PL

1 : C0⊗C1 −→ Ĉ1. It follows that:

PL
1 (1⊗ J) = yR

1 P1i1(1⊗ J) = yR
1 P1JC�C = LanJop⊗1⊗1P0

showing that (5) commutes and that the left proaction extends the canonical one on C0. A similar argu-
ment holds for the right proaction.

Suppose now that we start with the data specified in the proposition. The equalities (5) together with
the universal property of the pushout induce a functor P1 : C1 � C1 −→ C1

C0⊗C0 C1⊗C0

C0⊗C1 C1 � C1

C1

J⊗1

1⊗J i0
PR

1

i1

PL
1

P1

and it follows that P1JC�C = LanL
JopP0 making (P0,P1) the components of a tight V 2-profunctor P :

JC�C −7→ JC . The presheaf I0 : C op
0 −→ V together with its Kan extension I1 := LanJopI0 give the com-

ponents of a V 2-profunctor I : 1 −7→ J. Checking all the coherences is a long but ultimately routine
calculation.

A.12 Proof of Proposition 8

Proof. Take a prostrong promonad T : C −7→ C . We will show we have the data of Proposition 7.
T has a Kleisli category in V -Prof and there is an identity on objects free functor F : C −→ KlT .

By assumption C has a promonoidal structure (P0, I0) and we can use the left and right prostrengths
to define left and right proactions of C on KlT . On objects the left proaction acts as PL

1 (−,c,Fc′) :=∫ xKlT (−,Fx)⊗P0(x,c,c′) extending the canonical proaction on the centre, so that (5) commutes. Its
action on homs is induced by the strength

∫ c P0(−,−,c)⊗T (c,−)⇒
∫ c T (−,c)⊗P0(c,−,−).

Conversely, suppose we are given a pro-effectful category J : C0−→C1. Then T (−,=) :=C1(J−,J=)
a promonad on C0 where the promonad multiplication and units are given by composition in C1. More-
over, C1 is precisely the Kleisli category of T . Now, since J is pro-effectful, C0 is promonoidal and we
are left to show that T is prostrong over this structure. By Proposition 7, we have left and right proactions
of C1 on C0 which preserve the canonical proaction on the centre:

J =
J

= J
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From these we can construct the prostrength of T , for instance the left prostrength is given as follows.

T =
J∗

J

J`J∗
==⇒

J∗

J

J∗

J

=

J∗

J

J∗

J

J`J∗
==⇒

J∗

J

=
T

A.13 Proof of Theorem 8

Proof. Suppose J : C0 −→ C1 is a pro-effectful category. We will show that LanL
Jop : Ĉ0 −→ C1 is a closed

premonoidal category. Since C0 is promonoidal, Ĉ0 is closed monoidal under Day convolution.
As for the premonoidal structure on C1: on objects it is the same as on Ĉ0. On morphisms, suppose

we are given a η : F ⇒ G in C1. Then we have a η : LanJopF ⇒ LanJopG and we can describe the left
hand part of the premonoidal structure by

LanJop(F ? F ′)(−)∼=
∫ abc

C1(−,Jc)⊗P0(c,a,b)⊗Fa⊗F ′b

∼=
∫ ab

PR
1 (−,Ja,b)⊗Fa⊗F ′b

∼=
∫ bc

PR
1 (−,c,b)⊗ (LanJopF)(c)⊗F ′b

∫
η

==⇒
∫ bc

PR
1 (−,c,b)⊗ (LanJopG)(c)⊗F ′b

∼= LanJop(G ? F ′)(−)

and similarly for the right hand part. It is easily seen that LanL
Jop factorises through the centre of this

premonoidal structure.
The internal-hom of the left-closed premonoidal structure, [G,−] : C1 −→ Ĉ0 is given by

[G,H](a)∼=
∫

cd
V

(
PL

1 (c,a,d),V
(
(LanJopG)(d),(LanJopH)(c)

))
while the right-closed structure is similar, replacing PL

1 with PR
1 . In both cases, checking we have the

required adjunction is a matter of standard coend calculus e.g:

Ĉ0(F, [G,H])∼=
∫

a
V

(
Fa,

∫
cd

V
(
PL

1 (c,a,d)⊗ (LanJopG)(d),(LanJopH)(c)
))

∼=
∫

acd
V

(
Fa⊗PL

1 (c,a,d)⊗ (LanJopG)(d),(LanJopH)(c)
)

∼=
∫

c
V

(∫ ab
Fa⊗PL

1 (c,a,Jb)⊗Gb,(LanJopH)(c)
)

∼=
∫

c
V

(
LanJop(F ? G)(c),(LanJopH)(c)

)
∼= C1(F⊗G,H)
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Suppose now that LanL
Jop is a closed effectful category. Then it follows that Ĉ0 is a closed monoidal

category because:

Ĉ0
(
−, [G,LanL

Jop(=)]
)∼= C1

(
LanL

Jop(−)�G,LanL
Jop(=)

)
= C1

(
LanL

Jop(−⊗G),LanL
Jop(=)

)
∼= Ĉ0

(
−⊗G,Jop∗(LanL

Jop(=))
)

∼= Ĉ0 (−⊗G,=)

where Jop∗ is the right adjoint to LanL
Jop , both of which are ioo. Therefore C0 is a promonoidal category.

The left C0-proaction on C1 is given by PL
1 (−,a,b) := yL

0(a)� yL
1(b) = �i1(yL

0(a),yL
1(b)) and simi-

larly for the right. These extend the canonical proaction because:

PL
1 (−,a,Jb) =�i1(yL

0(a),yL
1(Jb)) =�i1(yL

0(a),LanL
JopyL

0(b)) =�i1(1⊗V LanL
Jop)(yL

0(a),yL
0(b))

= LanL
Jop⊗(yL

0(a),yL
0(b)) = LanL

JopP0(−,a,b)

where we have written the monoidal operation ⊗ on Ĉ0 and the premonoidal operation � on C1 with
prefix notation.

A.14 Proof of Theorem 9

Proof. J has commutative left and right actions by the monoidal V 2-category 1ZC : ZC −→ ZC . Consider
the V 2-category Tamb(J) of Tambara modules on J [35, 15], whose objects are the V 2-endoprofunctors
P : J −7→ J equipped with left and right strengths over the action by 1ZC . The morphisms are the bistrong
V 2-natural transformations. We can use Proposition 4 to unpack Tamb(J) into two V -categories and
an identity on objects functor, Tamb(J)0 −→ Tamb(J)1. The objects of Tamb(J)0 and Tamb(J)1 are the
bistrong endoprofunctors P : J −7→ J which are equivalently triples (P0 : ZC −7→ ZC ,P1 : C −7→ C ,η :
P0⇒ P1(Jop⊗ J)). Tamb(J)0 has arrows φ : P⇒ Q given by pairs (φ0 : P0⇒ Q0,φ1 : P1⇒ Q1) while
Tamb(J)1 has only the φ1 as arrows.

It is known that the category of Tambara modules is equivalent to the presheaf category of the cat-
egory of optics [35, 15], which in this particular case implies [Optic(J)op,V 2] ∼= Tamb(J). The V 2-
category Optic(J) has objects given by pairs a = (a,a′) of Optic(J) and homs given by

Optic(J)(a,b) =
∫ xy∈1ZC

J(a,x⊗b⊗ y)⊗ J(x⊗b′⊗ y,a′)

where J(−,−) := ZC (−,−)−→ C (−,−) is the hom of J as a V 2-category and the coend is taken in this
fully enriched setting. By Proposition 5 this coend is given by the following arrow.

∫ xy
ZC (a,x⊗b⊗ y)⊗ZC (x⊗b′⊗ y,a′)−→

∫ xy∈ZC

C (a,x⊗b⊗ y)⊗C (x⊗b′⊗ y,a′)

As a result, the identity on objects functor equivalent to Optic(J) is given by Optic(ZC )−→OpticZC (C )
as expected.

Now, since Tamb(J) has a closed monoidal structure given by composition of the profunctors, there
is an induced promonoidal structure on Optic(J). To arrive at the explicit expressions claimed in the
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Theorem, take objects a and b of Optic(J) and consider the tensor (i.e. composition as profunctors) of
the associated representable presheaves.

(ya⊗ yb)(−)∼=
∫ wxyz∈1ZC

J(−,w⊗a⊗ x)⊗ J(w⊗a′⊗ x,y⊗b⊗ z)⊗ J(y⊗b′⊗ z,−)

This can be unpacked by Proposition 5 to give the result.
Finally note that the unit of the monoidal structure on Tamb(J) is 1J : J −7→ J, which is (1ZC ,1C ,η :

1ZC ⇒ yJyJ).

A.15 Proof of Theorem 10

Proof. The free tight cocompletion of Optic(J) is given by [Optic(ZC )op,V ] −→ OpticZC (C ). We will
show that this is a closed effectful category and then by Theorem 8 we will be done.

Start by considering the effectful category Jop⊗ J : ZC op⊗ZC −→ C op⊗C . The free tight cocom-
pletion of this category is LanL

Jop⊗J : Prof(ZC )−→ Prof(C ) which is closed effectful. The domain is the
duoidal category Prof(ZC ) of endoprofunctors on ZC and it has a closed monoidal structure given by
Day convolution over the monoidal structure of ZC :

P∗Q :=
∫ aa′bb′

ZC (−,a⊗a′)⊗P(a,b)⊗Q(a′,b′)⊗ZC (b⊗b′,−) (8)

The premonoidal structure on Prof(C ) is given on objects by (8), and on homs it acts analogously to
(3). Explicitly, given a η : P⇒ P′ in Prof(C ) (that is, a η : LanJop⊗JP⇒ LanJop⊗JP′) the left side of the
premonoidal structure is given by:

LanJop⊗J(P∗Q)∼=
∫ aa′bb′

C (−,J(a⊗a′))⊗P(a,b)⊗Q(a′,b′)⊗C (J(b⊗b′),−)

∼=
∫ a′b′∈ZC ,cd∈C

C (−,coa′))⊗ (LanJop⊗JP)(c,d)⊗Q(a′,b′)⊗C (d ob′,−)
∫

η
==⇒

∫ a′b′∈ZC ,cd∈C
C (−,coa′))⊗ (LanJop⊗JP′)(c,d)⊗Q(a′,b′)⊗C (d ob′,−)

∼= LanJop⊗J(P′ ∗Q)

Since LanL
Jop⊗J is a left adjoint, it follows that it is a closed effectful category.

There is a V 2-category Tamb(ZC )−→Tamb(C ) with objects given by the Tambara modules on ZC .
The homs of Tamb(ZC ) are the bistrong natural transformations while the homs of Tamb(C ) are the
bistrong natural transformations between the left Kan extensions along Jop⊗ J of the Tambara modules.
This V 2-category inherits a closed effectful structure from LanL

Jop⊗J given by a certain quotient of (8)
which acts to normalise the duoidal structure on Prof(ZC ) [24, 22].

Finally note that the presheaf category of optics is equivalent to the category of Tambara modules,
̂Optic(ZC )op ∼= Tamb(ZC ) [15], and we can finally check that we also have OpticZC (C ) ∼= Tamb(C ).

B Background on Profunctors and Promonads

B.1 Profunctors

Here we assemble a very brief summary of the main definitions of profunctors and promonads, a more
comprehensive discussion can be found in e.g. [31, 34].
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Definition 16 (Profunctor). A profunctor P : C −7→D is a functor Dop⊗C −→ V .

There are a few ways to conceptualise the notion of a profunctor. If we think of a functor as a
categorification of a function, then a profunctor can be thought to be like a categorification of a binary
relation - indeed every relation A ∼ B between sets is a function A×B −→ 2. Similarly to how every
function is a relation, profunctors are strict generalisations of functors, for every functor F : C −→ D
induces two profunctors given by its contravariant and covariant Yoneda embeddings: D(−,F=) : C −7→
D and D(F−,=) : D −7→ C .

Definition 17 (Extranatural Transformation, Coend). Given a profunctor P : C op⊗C −→ V , a family of
arrows wc : P(c,c)−→ d in V is extranatural if the left-hand diagram commutes for all c and c′.

C (c,c′)⊗P(c′,c) P(c′,c′)

P(c,c) d

l

r

wc′

wc

P(c′,c) P(c′,c′)

P(c,c) d

P( f ,c)

P(c′, f )

wc′

wc

Here the arrows l and r are the left and right actions of the hom on P, given by transporting the arrows
defining P as an enriched functor along the adjunction due to the closed monoidal structure of V . In the
case where V = Set, the extranaturality condition reduces to the usual “cowedge” diagram on the right
above. The coend of P is a universal extranatural transformation coprc : P(c,c) −→

∫ c P(c,c): this is the
extranatural transformation such that all other extranatural transformations factorise uniquely through it.

The composition of profunctors is given by coend:

Q◦P =
∫ d

Q(−,d)⊗P(d,−)

where the identity profunctor is given by the hom-profunctor C (−,=) : C −7→C because of the following
instances of the “ninja” Yoneda lemma,

F(−)∼=
∫ c

C (−,c)⊗F(c), G(−)∼=
∫ c

G(c)⊗C (c,−)

Categories, profunctors and natural transformations assemble into a monoidal bicategory V -Prof.
It will be useful to also outline another way to view profunctors and their composition. The Yoneda

lemma gives us an embedding y : C −→ [C op,V ] which exhibits the presheaf category Ĉ := [C op,V ] as
the free cocompletion of C . In particular, for any cocomplete category D and functor F : C −→ D there
is a unique (up to natural isomorphism) cocontinuous functor F ′ : Ĉ −→ D such that F ′y ∼= F naturally.
We can construct such a functor by taking the left Kan extension F ′ ∼= LanyF .

Now, using the closed monoidal structure of V -Cat we can see that every profunctor P : C −7→ D
is equivalently a functor P′ : C −→ D̂ . We can then lift P to a functor P̂ := LanyP′ : Ĉ −→ D̂ which is
cocontinuous. That is to say, P is equivalent to a cocontinuous functor between presheaf categories.
The composition of profunctors can now be shown to be composition of the corresponding cocontinuous
functors. In fact, there is an equivalence of bicategories V -Prof ∼= V -Cocont between the bicategory of
profunctors and the 2-category of cocontinuous functors between free cocompletions.

B.2 Promonads

While a monad is a monoid in the category of endofunctors, a promonad is a monoid in the category of
endoprofunctors. Unpacking this yields the following definition:
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Definition 18 (Promonad). A promonad is a triple (T, µ,η) of a profunctor T : C −7→ C , a natural
transformation µ : T 2 = T ◦ T −→ T and a natural transformation η : 1 −→ T such that the following
diagrams commute:

T 3 T 2

T 2 T

T µ

µT µ

µ

T T 2

T 2 T

T η

ηT µ

µ

Example 1. Let T : C −→C be a monad. Then its contravariant Yoneda embedding C (−,T=) : C −7→C
yields a promonad on C .

Conceptually it may be useful to think of a promonad T as a generalised hom-functor: for each pair
of objects A,B there is a set T (A,B) of “arrows” from A to B together with a composition rule given by
µ and a unit rule given by η .

Any promonad can also be viewed as a cocontinuous monad because of the equivalence Prof ∼=
Cocont. Given a promonad T , we can view T instead as a cocontinuous functor T̂ : Ĉ −→ Ĉ . The
promonad laws of T can then be shown to make T̂ into a monad. Conversely, any cocontinuous monad
T̂ : Ĉ −→ Ĉ is equivalently a promonad T : C −7→ C .

The bicategory V -Prof permits the Kleisli construction for monads [46] so that we can assign any
promonad a Kleisli category.
Definition 19 (Kleisli category). Let T : C −7→ C be a promonad. The Kleisli category KlT has the same
objects as C and hom-objects KlT (a,b) = T (a,b). Composition is induced by the multiplication µ of
the promonad, and units by η .

The unit η of the promonad T also induces an identity on objects functor F : C −→ KlT . Conversely,
given any identity on objects functor J : C −→ D one can construct a promonad D(J−,J=) : C −7→ C .
These constructions are mutually inverse so that KlT (F−,F=) = T (−,=).
Example 2. For simplicity take V = Set. Let T : C −→C be a monad and write T ′=C (−,T=) : C −7→C
for the induced promonad. The Kleisli category of T ′ has the same objects as C while an arrow a −→ b
is an element of C (a,T b), that is an arrow a −→ T b. We can see that KlT ′ coincides with the standard
Kleisli category KlT of the monad T .

Now when C is promonoidal one can define a prostrength for a promonad on C so as to ensure that
the promonad behaves compatibly with the promonoidal structure.
Definition 20 (Prostrong Promonad). Suppose C is a promonoidal category and suppose (T, µ,η) is a
promonad on C . A left prostrength for T is a natural transformation

T

t
=⇒ T

such that the following diagrams commute (ignoring interchange isomorphisms in V -Prof).

T

T

T

λ−1
λ−1

t

T
T

η η

t



28 Optics for Premonoidal Categories

T

T

T

T

T

t

α−1

t

α−1

t

T 2

T

T

T 2

T
T

t

µ

t

µ

t

A right prostrength s is defined analogously and we say that a promonad is prostrong if it is equipped
with left and right prostrengths such that the two evident maps agree:

T

T

T

T

T
T

s

α−1

t

α−1

t s

When C is monoidal (so that the promonoidal structure is representable) we recover the notion of a
strong promonad. These are also known as “arrows” because they axiomatise such objects in functional
programming [3, 27].
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