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In this talk, we will classify all N-valued invariants of open

Petri nets which are additive with respect to composition

and monoidal product in the category of open Petri nets,

OPetri. Formally, these invariants are monoidal functors

OPetri→ BN. The additive invariants of open Petri nets are

completely determined by their values on a particular class

of single-transition Petri nets. For open Petri nets whose

legs are monic maps, the additive invariants are determined

by their values on all single-transition Petri nets as well as

transitionless Petri nets. Our results confirm a conjecture

made by John Baez during the AMS 2022 Mathematical Re-

search Communities workshop. The paper-length version is

available at https://arxiv.org/abs/2303.01643.

1 MOTIVATION
Petri nets represent many kinds of processes (concurrent,

asynchronous, distributed, parallel, nondeterministic, and

stochastic, to name a few) in which some entities (the species)

undergo transformations (transitions) in order to be con-

verted into other kinds of entities [1, 6, 7, 9, 10, 13, 15, 20].

For example, in chemistry, there are vast databases record-

ing many kinds of chemical reactions and their associated

Petri nets [8, 12, 16, 19] which are studied empirically by

computationally seeking patterns, motifs [18], and numeri-
cal invariants that arise within this data. For instance, these

invariants may include calculating the production of iron or

the appearances of a catalyst in a reaction.

Often due to the sheer size of the Petri nets in such databases,

it is convenient to consider a large Petri net as built out of

smaller constituent nets which are “glued” together to form

the whole. The compositional structure of Petri nets can be

leveraged in studying invariants of Petri nets so long as the

invariants behave nicely with respect to this kind of gluing.

An example of such “nice” behaviour is additivity: if 𝑃 is

the composite of Petri nets 𝑃1, . . . , 𝑃𝑛 , then the value of an

additive invariant on 𝑃 reduces to computing the invariant

on each of 𝑃1, . . . , 𝑃𝑛 and summing the results.

Additive invariants are examples of compositional seman-

tics for Petri nets. Their relative simplicity compared with

the semantics of mass action kinetics — a natural number

rather than a differential equation — is practical for devel-

oping domain specific Petri nets. For example, an invariant

can express a constraint imposed by domain experts or dis-

covered empirically by analyzing real-world Petri nets. The

compositional nature of such invariants is useful for con-

straint verification and modularly building networks to sat-

isfy a certain constraint. These features can be implemented

straightforwardly in the software package AlgebraicPetri.jl.

The classification of these additive invariants relies on

two decomposition lemmas for open Petri nets. Given the

large literature on open Petri nets in applied category theory,

these lemmas are of independent significance.

Composition of open Petri nets has a rich history in ap-

plied category theory [2, 3, 17], and the decomposition of

graphical models has been previously studied. Nielsen et.

al. [14] prove that a finite Petri net can be built from single-

place and single-transition Petri nets via a collection of

many operations on nets known as combinators. Gadduci and
Heckel [5] present a kindred theorem for the decomposition

of graphs into atomic components.

2 CLASSIFYING ADDITIVE INVARIANTS
The category OPetri is a decorated cospan category [4]

whose objects are finite sets andwhosemorphisms are cospans

of finite sets where the apex is the species set of a Petri net [2].

An additive invariant of open Petri nets is a monoidal func-

tor 𝐹 : OPetri→ BN where BN is the one-object category

induced by the monoid (N, +). The monoidal product of BN
is also given by +. Note that the literature on Petri nets uses

the word “invariant" for a different concept, namely a solu-

tion to the equation 𝐴𝑥 = 0 or 𝐴𝑇𝑦 = 0 where 𝐴 is the Petri

net’s incidence matrix [11]. Whereas those invariants are

quantities that take the same value for all markings reachable

within a Petri net, the invariants presented in this abstract are

quantities assigned to a Petri net that respect composition.

An additive invariant depends solely on the number of

input arcs and output arcs of each transition. We define

canonical open Petri nets with 𝑚 input arcs and 𝑛 output

arcs as follows: Let 𝑃𝑚,𝑛 be the Petri net with a single transi-

tion that has𝑚 distinct input species and 𝑛 distinct output

species. Let P𝑚,𝑛 be the open Petri net decorated by 𝑃𝑚,𝑛

and whose underlying cospan is the identity. The additive

invariants of open Petri nets are completely determined by

their behavior on the open Petri nets of the form P𝑚,𝑛 . This

idea is formalized in the following theorem.

Theorem 2.1. For any two𝑚,𝑛 ∈ N, there is a functor

𝐹𝑚,𝑛 : OPetri→ BN

which maps each open Petri net to the total number of transi-
tions with exactly𝑚 input arcs and 𝑛 output arcs.
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Furthermore, any additive invariant 𝐺 : OPetri → BN
is completely determined — as a linear combination of the
functors 𝐹𝑚,𝑛 defined above — by its values on the family P𝑚,𝑛 .
In particular, we have

𝐺 (−) =
∑︁

𝑚,𝑛∈N
𝐺 (P𝑚,𝑛)𝐹𝑚,𝑛 (−).
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Figure 1: An open Petri net with three transitions. The tran-
sitions labeled𝛼 and𝛾 both have one input arc and two output
arcs and so 𝐹1,2 applied to this open Petri net is 2. Conversely,
the transition labeled 𝛽 has one input arc and one output arc.
Therefore, 𝐹1,1 applied to this open Petri net is 1.

We are also interested in the category of mope nets, open
Petri nets whose legs are monomorphisms. These Petri nets

form a category MOPetri which is a wide subcategory of

OPetri. In OPetri, composing open Petri nets can identify

two species in the decoration of one of the factors. For ex-

ample, an input species and an output species of a transition

may be identified so that they appear as a single catalyst in

the composite. This identification is not possible inMOPetri.
Instead, composition inMOPetri preserves the relation be-

tween each transition and its input and output species.

Whereas the additive invariants of open Petri nets depend

on their behavior on the open Petri nets P𝑚,𝑛 , we prove

that the additive invariants of mope nets depend on their

behavior on the following two classes of mope nets:

• Boundary nets, which are transitionless open Petri

nets whose underlying cospan is either of the form

0→ 𝑆
1𝑆←−− 𝑆 or 𝑆

1𝑆−−→ 𝑆 ← 0.

• Body nets, which are open Petri nets whose underly-

ing cospan is the identity and whose decoration has a

single transition.

Finer additive invariants of mope nets exist, because the

identity of species is preserved by composition inMOPetri.

For example, counting catalysts — species which are both

consumed and emitted by a transition — is an additive in-

variant of mope nets.

3 DECOMPOSITION OF OPEN PETRI NETS
The proofs of the classification theorems rely on two decom-

position lemmas. The decomposition lemmas are of indepen-

dent interest, because they allow us to study open Petri nets

as compositions of factors with one or zero transitions.

The first decomposition lemma specifies that an open Petri

net can be decomposed into the composite and monoidal

product of transitionless open Petri nets and open Petri nets

of the form P𝑚,𝑛 . This lemma is used to prove Theorem 2.1,

and Figure 2 gives an application of it.

The second decomposition lemma specifies that an open

Petri net can be decomposed into the composite of transi-

tionless open Petri nets and body nets. This lemma is used

to prove the analogous classification theorem for mope nets.
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Figure 2: The decomposition of the open Petri net depicted
in Figure 1 as defined in the first decomposition lemma. The
decomposition is Q # (G0 ⊕G1 ⊕G2 ⊕G3) #Q ′. Graphically each
G𝑖 is enclosed by a grey box and they are shown in numerical
order from top to bottom.
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