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Algorithmicists are well-aware that fast dynamic program-

ming algorithms are very often the correct choice when com-

puting on compositional (or even recursive) graphs. Here
we initiate the study of how to generalize this folklore intu-

ition to mathematical structures writ large. We achieve this

horizontal generality by adopting a categorial perspective

which allows us to show that: (1) structured decompositions
(a recent, abstract generalization of many graph decomposi-

tions) define Grothendieck topologies on categories of data

(adhesive categories) and that (2) any computational prob-

lem which can be represented as a sheaf with respect to

these topologies can be decided in linear time on classes of

inputs which admit decompositions of bounded width and

whose decomposition shapes have bounded feedback vertex

number. This immediately leads to algorithms on objects

of any C-set category; these include – to name but a few

examples – structures such as: symmetric graphs, directed

graphs, directed multigraphs, hypergraphs, directed hyper-

graphs, databases, simplicial complexes, circular port graphs

and half-edge graphs. Finally we pair our theoretical results

with concrete implementations of our main algorithmic con-

tribution in the AlgebraicJulia ecosystem. The paper-length

version of this extended abstract – which is joint work Ernst
Althaus, James Fairbanks and Daniel Rosiak – is available at

https://arxiv.org/abs/2302.05575.

1 PHILOSOPHY
Among the many different incarnations of compositionality

in mathematics, the following three will be the main charac-

ters of this story: (1) the structural compositionality arising

in graph theory in the form of graph decompositions whereby
one decomposes graphs into smaller and simpler constituent

parts [3–8], (2) the representational compositionalityarising

in the form of sheaves in algebraic topology (and elsewhere)

and (3) the algorithmic compositionality embodied by the

intricate dynamic programming routines found in parame-

terized complexity theory [3, 4, 6–8]. Our main contribution

(Theorem 4.2) is an algorithmic meta-theorem obtained by

amalgamating these three perspectives.

2 DECISION PROBLEMS
Computational problems are assignments of data – thought

of as solution spaces – to some class of input objects. We

think of them as functors F : C → Sol taking objects of

some category C to objects of some appropriately chosen

category Sol of solution spaces. Rather than computing the

entire solution space, we often have to settle for more ap-

proximate representations of the problem – in the form of

decision/optimization/enumeration problems. When does a

given computational problem admit a compositional struc-

ture that is well-behaved with respect to decompositions of

the input data? One of our motivations was the observation

that sheaves may be applicable to this situation. Here we

will focus on decision problems: for a given computational

problem F we define the F -decision problem as the com-

posite C
F−→ Sol

dec−−→ 2where dec is a functor into 2mapping

solutions spaces to either ⊥ or ⊤ depending on whether they

witness yes- or no-instances to F . For example consider the

GraphColoring𝑛 problem
1
; it can easily be encoded as the

representable functor SimpFinGr(−, 𝐾𝑛) : SimpFinGr𝑜𝑝 →
FinSet on the category of finite simple graphs. One turns

this into decision problems by taking dec : FinSet → 2 to

be the functor which takes any set to ⊥ if and only if it is

empty. By passing to other categories of graphs (for instance

that of graphs and their monomorphisms) one can also easily

encode other decision problems such as VertexCover and

OddCycleTransversal.

3 COMPOSITIONAL DATA
Parameterized complexity [4] is a two-dimensional frame-

work for complexity theory whose main insight is that one

should not analyze running times only in terms of the total

input size, but also in terms of other parameters of the inputs
(such as measures of compositional structure [4]). Here we
represent compositional structure via diagrams: we think of

an object 𝑐 ∈ C obtained as the colimit of a diagram𝑑 : J → C
as being decomposed by 𝑑 into smaller constituent pieces. In

particular we work with a special class of diagrams (suited

for algorithmic manipulation) called structured decompo-
sitions [2]. Roughly they consist of a collection of objects

in a category and a collection of spans which relate these

objects (just like the edges in a graph relate its vertices).

Definition 3.1. Let𝐺 be a graph viewed as a C-set. Fix-

ing a base category K, we define a K-valued structured
decomposition of shape 𝐺 as a diagram of the form

𝑑 :
∫
𝐺 → K whose arrows are all monic in K. (Note

1
It asks to determinewhether a given input graph𝐺 admits a proper coloring

with at most 𝑛 colors.
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that, the Grothendieck construction applied to a graph

𝐺 yields a category whose arrows form spans from each

edge of 𝐺 to its endpoints.) Structured decompositions

assemble into a subcategory 𝔇m K of the category of

diagrams in K.

4 DECISION PROBLEMS AS SHEAVES
One of our main contributions is to show that structured

decompositions yield Grothendieck topologies
2
on adhesive

categories which are adhesively cocomplete3.

Theorem 4.1. Let C be a small adhesively cocomplete
category. The following is a contravariant functor by pull-
back.

Dcmp : C𝑜𝑝 → Set (1)

Dcmp : 𝑐 ↦→ {Λ𝑑 | colim𝑑 = 𝑐 and 𝑑 ∈ 𝔇m C}⋃
{{𝑓 } | 𝑓 : 𝑎 �−→ 𝑐 an iso }.

This functor makes the pair (C,Dcmp) a site.
This result allows us to consider those decision problems

which display compositional structure compatible with that

highlighted by structured decompositions; namely any prob-

lem F : C𝑜𝑝 → Set which is a sheaf with respect to the

decomposition topology of Theorem 4.1.

Roughly, our main algorithmic result shows that any such

problem can be solved in time that grows linearly in the size

of the decomposition and exponentially in in terms of the

internal complexity of the constituent parts and the feedback

vertex number
4
of the shape of the decomposition.

Theorem 4.2. Let 𝐺 be a finite, irreflexive, directed
graph without antiparallel edges and at most one edge
for each pair of vertices. Let C be a small adhesively co-
complete category, let F : C𝑜𝑝 → FinSet be a presheaf.
If F is a sheaf on the site

(
C,Dcmp

)
and if we are given

an algorithm AF which computes F on any object 𝑐 in
time 𝛼 (𝑐), then there is an algorithm which, given any
C-valued structured decomposition 𝑑 :

∫
𝐺 → C of an

object 𝑐 ∈ C and a feedback vertex set 𝑆 of 𝐺 , computes
decF 𝑐 in time

(max

𝑥∈𝑉𝐺
𝛼 (𝑑𝑥) + 𝜅 |𝑆 |𝜅2) |𝐸𝐺 |

where 𝜅 = max𝑥∈𝑉𝐺 | F 𝑑𝑥 |.

2
For the reader concerned with size issues, observe that: (1) given categories

C and D, the functor category [𝐶,𝐷 ] is small whenever C and D also are;

and (2) since we are concerned with diagrams whose domains have finitely

many objects and morphisms, one has that the collection of diagrams which

yield a given object as a colimit is indeed a set.

3
i.e. they have colimits of diagrams of monomorphisms.

4
A feedback vertex set in a graph 𝐺 is a vertex subset 𝑆 ⊆ 𝑉 (𝐺 ) of 𝐺
whose removal from𝐺 yields an acyclic graph.

We note (just as Bodlaender and Fomin [1] already did) that

it is not the width of the decompositions of the inputs that

matters; instead it is the width of the decompositions of the
solutions spaces (whose constituent parts are sets) that is

key to the algorithmic bounds. Furthermore, we note we are

treating the algorithm A |𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐹 as if given by an oracle.

We state our result in terms of a running time bound on

A |𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐹 to make explicit how, in practice, this computa-

tion will impact the overall running time.

4.1 Sketching Theorem 4.2
Notice that, if C has colimits, and is adhesive, then, since

sheaves for the Decmp topology preserve the corresponding

colimits (sending them to limits of sets) [9], the following

diagram will always commute [2].

C FinSet𝑜𝑝 2𝑜𝑝

𝔇m C 𝔇m FinSet𝑜𝑝
colim colim

F

𝔇m F

𝑐𝑜𝑚𝑚.

dec
𝑜𝑝

(2)

Unpacking the diagram, the blue path corresponds to for-

getting the compositional structure and then solving the

problem on the entire input. On the other hand the red

path corresponds to a compositional algorithm for decid-

ing sheaves: one first evaluates F on the constituent parts of

the decomposition and then joins
5
these solutions together

to find a solution on the whole.

Unfortunately what we just described is still very ineffi-

cient since, for any input 𝑐 and no matter which path we take

in the diagram, we always end up computing all of F (𝑐):
this is very large in general (think of coloring sheaf men-

tioned above). One might hope to overcome this difficulty

by lifting
6 dec to a functor from FinSet𝑜𝑝 -valued structured

decompositions to 2𝑜𝑝 -valued structured decompositions as

is shown in the following diagram.

C FinSet𝑜𝑝 2𝑜𝑝

𝔇m C 𝔇m FinSet𝑜𝑝 𝔇m 2𝑜𝑝
colim colim

F

𝔇m F

𝑐𝑜𝑚𝑚.

dec
𝑜𝑝

𝔇m dec
𝑜𝑝

colim=∧

However, this too is to no avail: the right-hand square of the

above diagram does not commute in general. The main ingre-

dient in proving our algorithmic result is to show that there

is an efficiently computable endofunctor A : 𝔇m Set𝑜𝑝 →
𝔇m Set𝑜𝑝 making the following diagram commute.

5
Note that the colimit functor colim : 𝔇m FinSet𝑜𝑝 → FinSet𝑜𝑝 – which is

in red in Diagram 2 – takes decompositions to their limit in FinSet (since
colimits in FinSet𝑜𝑝 are limits in FinSet); we invite the reader to keep this

in mind throughout.

6
The construction of categories of structured decompositions is functo-

rial [2], this is inherited from the analogous statement for categories of

diagrams.

2



C FinSet𝑜𝑝 2𝑜𝑝

𝔇m C 𝔇m FinSet𝑜𝑝 𝔇m FinSet𝑜𝑝 𝔇m 2𝑜𝑝
colim colim

F

𝔇m F

𝑐𝑜𝑚𝑚.

dec
𝑜𝑝

A 𝔇m dec
𝑜𝑝

∧𝑐𝑜𝑚𝑚.
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