
Submitted to:
ACT 2023

© K. Brown & D. I. Spivak
This work is licensed under the
Creative Commons Attribution License.

A graphical language for rewriting-based programs
and agent-based models

Kristopher Brown David I. Spivak
Topos Institute
Berkeley, USA

kris@topos.institute david@topos.institute

AlgebraicRewriting.jl is a computational category theory which focuses on implementing ideas in
the graph rewriting literature [1]. Rewrite rules offer a combinatorial syntax to declaratively encode
processes of data deletion, addition, merging, and copying. This provides an improvement over gen-
eral purpose code for visualization and static analysis; however, some additional syntax is needed for
applications that require application of rewrite rules in a controlled sequence. We have recently ex-
tended AlgebraicRewriting.jl with such a syntax, built on top of directed wiring diagrams with traces.
The syntax is justified by a proposed trace structure on a dynamic Kleisli category, DKt , which is intro-
duced in [2]. Let c⟨−⟩ be the cofree comonoid construction on Poly [4], and let Cat♯ be the symmetric
monoidal category of categories and cofunctors. Given a polynomial monad t, DKt is defined as the
following category enriched in Cat♯:

Ob(DKt) := Ob(Set) HomDKt (A,B) := c⟨[Ay, t ◁By]⟩

We implement a DSL for graph transformation programs by taking certain morphisms in DKt as
primitive generators: construction of a composite program is performed by composing these primitive
morphisms with the syntax of traced directed wiring diagram. The domain and codomain of our mor-
phisms of interest consist of sets of diagrams of the form in Figure 1, and coproducts thereof. These are
diagrams in a category of ACSets, i.e. attributed C -Sets for some finitely-presented category C , which
are a category-theoretic model of databases which extends C -Sets (i.e. copresheaves) to include noncom-
binatorial data [3]. Each such diagram, which we will call a trajectory, is a sequence of ‘world states’
Xi with distinguished focuses Ai → Xi. A given ‘focus’ A can be thought of as the shape of a particular
agent in the state of the world X , where the agent is picked out by the chosen morphism. This expressiv-
ity allows us to perform agent-based modeling (e.g. rewrite rules that express “add a loop to this vertex"
rather than “add a loop some vertex"). Furthermore, the parameterization by a polynomial monad allows
our implementation to naturally generalize to non-deterministic and probabilistic simulations.

We will introduce the generating morphisms of our DSL (for rewriting, pure control flow, and for
changing agent focus) and then demonstrate how prototypical examples of agent-based modeling (e.g.
NetLogo’s wolf-sheep predation model, Kappa’s molecular systems biological models) can be combi-
natorially expressed in this formalism. Furthermore advantages of this representation over code-based
representations of agent-based models, such as functorial data migration and language-agnostic serial-
ization, will be demonstrated. A toy example is shown in Figure 2.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation


2 Rewriting-based programs

A1 A2 · · · An

X1 X2 · · · Xnp pp

Figure 1: Reproduced from [2]: A trajectory in the space of ACSets. X1 and Xn respectively represent
the initial (resp. current) state of the world during the simulation, and each successive world state is
related to the previous via a partial map (indicated by a ticked arrow). Each world state Xi also has a
distinguished focus Ai → Xi.

Figure 2: This toy simulation in the cate-
gory of directed graphs showcases most of the
primitive generators: Query (yellow), Rewrite
(blue), Control Flow (light red), Agent Weak-
ening (lavender), Agent Strengthening (green),
and Fail (red). The required data and seman-
tics for each box is described in Figures 8 and 9
of [2]. The current agent shape at each point in
the control flow is known statically, visualized
with a miniature graph. The overall simulation
starts with a designated edge. It looks for all
edges out of the target of the edge. For each of
these, we focus on its target. We flip a coin and
possibly add a loop to that vertex. After this
is done, we focus on the source of our origi-
nal edge. We simultaneously add a new vertex
(and edge to that vertex) while making this new
edge our focus as we exit the simulation.

References
[1] Kristopher Brown, Evan Patterson, Tyler Hanks & James Fairbanks (2022): Computational category-theoretic

rewriting. In: Graph Transformation: 15th International Conference, ICGT 2022, Held as Part of STAF 2022,
Nantes, France, July 7–8, 2022, Proceedings, Springer, pp. 155–172.

[2] Kristopher Brown & David I. Spivak (2023): Dynamic Tracing: a graphical language for rewriting protocols.
arXiv:2304.14950.

[3] Evan Patterson, Owen Lynch & James Fairbanks (2022): Categorical Data Structures for Technical Comput-
ing. Compositionality 4, doi:10.32408/compositionality-4-5. Available at https://doi.org/10.32408/
compositionality-4-5.

[4] David I. Spivak (2022): A reference for categorical structures on Poly, doi:10.48550/ARXIV.2202.00534.
Available at https://arxiv.org/abs/2202.00534.

https://arxiv.org/abs/2304.14950
https://doi.org/10.32408/compositionality-4-5
https://doi.org/10.32408/compositionality-4-5
https://doi.org/10.32408/compositionality-4-5
https://doi.org/10.48550/ARXIV.2202.00534
https://arxiv.org/abs/2202.00534

