Subsumptions of Algebraic Rewrite Rules

Thierry Boy de la Tour
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
thierry.boy-de-la-tour@imag.fr

What does it mean for an algebraic rewrite rule to subsume another rule (that may then be called a subrule)? We view subsumptions as rule morphisms such that the simultaneous application of a rule and a subrule (i.e. the application of a morphism) yields the same result as a single application of the rule. Simultaneous applications of categories of rules are obtained by Global Coherent Transformations and illustrated on graphs in the DPO approach. Other approaches are possible since these transformations are formulated in an abstract Rewriting Environment, and such environments exist for DPO, SqPO, PBPO rules.

1 Introduction

In Global Transformations [17] rules in the form of pairs (L,R) of graphs (or objects in a category $\mathscr C$) are applied simultaneously to an input graph (as in L-systems [10] and cellular automata [9]). Such rules are related by pairs of $\mathscr C$ -morphisms. These morphisms come from representing possible overlaps of rules as subrules whose applications are induced by the overlapping applications of rules, therefore establishing a link between these. By computing a colimit of a diagram involving the morphisms between occurrences of right-hand sides, Global Transformations offer the possibility to merge items (vertices or edges) in these occurrences of right-hand sides.

This form of rules has the advantage of simplicity, first because rule morphisms are those of the product category $\mathscr{C} \times \mathscr{C}$, and second because the input object is completely removed. Indeed, when all occurrences of L have been found in the input graph G, the output graph G is produced solely from the corresponding occurrences of G, thus effectively removing G. In particular, if no G has any match in G then G is, say, a relational database, this may be inconvenient.

More standard approaches to rewriting use rules for *replacing* matched parts of the input object by new parts. These substitutions are performed by first removing the matched part and then adding the new part, which is performed by a pushout. But since there is no general algebraic way of removing parts of a \mathscr{C} -object, several approaches have been devised, from DPO [7] to PBPO [4] rules. These rules always have an interface K with a pair of \mathscr{C} -morphisms from K to L and R, but can be more complicated. Hence the necessity of a general notion of morphism between rules.

In Section 3 an intuitive analysis of rule subsumptions on a simple example with DPO-rules leads to morphisms between DPO direct transformations. The intuition is made clear in Section 4 where Global Coherent Transformations are defined and illustrated on the running example with DPO rules. This definition is carried out in a *Rewriting Environment* that provides the relevant categories of rules and of direct transformations (and functors between them). This derives from the Parallel Coherent Transformations defined in [2] (only for a variant of DPO rules), where sets or rules can be applied simultaneously on an input object. One important problem is that overlapping rules may conflict if one rule deletes an item that another rule preserves (this cannot happen with Global Transformations since they preserve nothing). Since only non conflicting (so called *coherent*) matchings can be applied simultaneously, the notion of Parallel Coherence from [2] is adapted in order to embrace rule morphisms.

Submitted to: ACT 2023

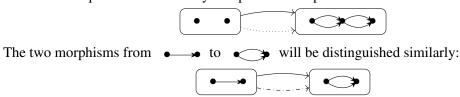
Section 5 is devoted to the analysis of Rewriting Environments, and yields natural definitions of environments for the SqPO and PBPO approaches. Future work and open questions are found in Section 6.

2 Notations

Embeddings are injective functors (as in [11]), all other notions are compatible with [16]. We also use *meets* and *sums* of functors, see [13].

For any category $\mathscr C$, we write $G \in \mathscr C$ to indicate that G is a $\mathscr C$ -object, and $|\mathscr C|$ is the discrete category on $\mathscr C$ -objects. Then G also denotes the functor from the terminal category $\mathbf 1$ to $|\mathscr C|$ that maps the object of $\mathbf 1$ to G. The *slice* category $\mathscr C \setminus G$ has as objects $\mathscr C$ -morphisms of codomain G, and as morphisms $h: f \to g \mathscr C$ -morphisms such that $g \circ h = f$. The *coslice* category $G \setminus \mathscr C$ has as objects $\mathscr C$ -morphisms of domain G, and as morphisms $h: f \to g \mathscr C$ -morphisms such that $h \circ f = g$.

We will use the standard notion of graphs with multiple directed edges. The initial graph is denoted \varnothing . In the running example we will use graphs with 2 to 3 vertices and 0 to 4 edges denoted directly by their drawings, as in • • and • • and • • In order to avoid naming vertices, they will always be depicted from left to right, and we will use at most two monomorphisms from one graph to another: one (depicted as a plain arrow) that maps the leftmost (resp. rightmost) vertex of the domain graph to the leftmost (resp. rightmost) vertex of the codomain graph, and one (dotted arrow) that swaps these vertices. For example we consider only two possible morphisms:



3 Subrules in DPO Graph Transformations

The notion of a rule ρ being a subrule of a rule ρ' , or more generally of a morphism $\sigma: \rho \to \rho'$, covers the idea that ρ represents a part (specified by σ) of what ρ' achieves, and therefore that any application of ρ' entails and subsumes a particular application (obtained through σ) of ρ . In [17] the morphisms σ are pairs of unrelated graph morphisms. But in the DPO approach the left and right-hand sides of a rule are related by morphisms from an interface graph K, hence the graph morphisms in σ should also be related.

Example 3.1. In the running example we transform every directed edge in a graph into a pair of consecutive edges. This can be expressed as the following rule

$$\begin{array}{c|c}
\bullet & \bullet \\
\hline
\bullet & \bullet
\end{array}$$

We do not wish to transform loops in this way, hence we adopt the DPO approach restricted to monic matches. We also wish to create only one middle vertex for parallel edges, so that the input graph $G = \longrightarrow$ in our running example shall be transformed into $H = \longrightarrow$. In order to merge the two vertices created by the two simultaneous applications of ρ' on G we need to link them through the application of a common subrule on their overlap. Consider the rule

The right hand side expresses the fact that the middle vertex is created depending on the overlap \bullet and not on the edges of G. Thus we need to link the middle vertices from ρ and ρ' right-hand sides through a morphism $\sigma^+: \rho \to \rho'$, given as three \mathscr{C} -morphisms:

The two square diagrams commute, and we easily understand that this is necessary for ρ to be a subrule of ρ' . But commutation would also hold if the interface graph of ρ were \varnothing , and then ρ would remove the overlap • • . This would conflict with ρ' that preserves the overlap. We need the two rules to behave similarly on the overlap, which means that the interface of the subrule ρ is determined by the way the interface of ρ' intersects the overlap. This can be expressed by stating that the left square should be a pullback.

Definition 3.2 (categories \mathcal{R}_{DPO} , \mathcal{R}_{DPOm}). Let **sp** be the category generated by the graph

$$L \xleftarrow{\quad l\quad } K \xrightarrow{\quad r\quad } R$$

For any category \mathscr{C} , let \mathscr{R}_{DPO} be the category whose objects are the functors $\rho: \mathbf{sp} \to \mathscr{C}$ such that ρl is monic, and morphisms $\sigma: \rho \to \rho'$ are triples $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ of \mathscr{C} -morphisms such that

$$\begin{array}{ccc}
\rho L & \stackrel{\rho l}{\longleftarrow} \rho K & \stackrel{\rho r}{\longrightarrow} \rho R \\
\sigma_1 \downarrow & & \downarrow \sigma_2 & \downarrow \sigma_3 \\
\rho' L & \stackrel{\rho' l}{\longleftarrow} \rho' K & \stackrel{\rho' r}{\longrightarrow} \rho' R
\end{array}$$

commutes in $\mathscr C$ and the left square is a pullback. The obvious composition $\sigma' \circ \sigma$ is given by $(\sigma'_1 \circ \sigma_1, \sigma'_2 \circ \sigma_2, \sigma'_3 \circ \sigma_3)$, and the obvious identity is $1_{\rho} = (1_{\rho L}, 1_{\rho K}, 1_{\rho R})$.

Let \mathcal{R}_{DPOm} be the subcategory of \mathcal{R}_{DPO} with all rules and morphisms σ such that σ_1 and σ_2 are monics.

Example 3.3. We consider two morphisms of rules, σ^+ above and σ^- : $\rho \to \rho'$ that swaps the left and right vertices:

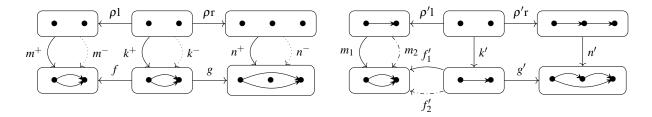
There are two obvious matchings m_1 and m_2 of ρ' in G, and they induce two matchings of ρ in G, say $m^+ = m_1 \circ \sigma_1^+ = m_2 \circ \sigma_1^+$ and $m^- = m_1 \circ \sigma_1^- = m_2 \circ \sigma_1^-$.

The existence of DPO-transformations that correspond to these matchings requires the existence of pushout complements and is subject to the gluing condition (see [8, 6]). We say that an item (edge or vertex) of G is marked for removal by $m: \rho L \to G$ if it has a preimage by the matching m that has none by ρl (those are the items that have no preimage in the pushout complement, see [3]). Then the gluing condition states that (1) items marked for removal have only one preimage by the matching m, and (2) if a vertex adjacent to an edge is marked for removal, then so is this edge. We first see that this condition is inherited (backward) along the morphisms of \mathcal{R}_{DPOm} .

¹Such functors are span diagrams in *C*, the point here is to give fixed names to their objects and morphisms.

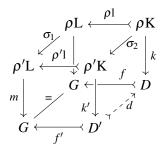
Proposition 3.4. If $\mathscr C$ is the category of graphs, $\sigma: \rho \to \rho'$ is a morphism in $\mathscr R_{DPO}$ such that σ_1 is monic and $m: \rho'L \to G$ is a matching that satisfies the gluing condition then so does the matching $m \circ \sigma_1: \rho L \to G$.

Example 3.5. We see that m_1 and m_2 satisfy the gluing condition, hence they have a pushout complement by $\rho'1$ and so do m^+ and m^- by ρ 1. We therefore get two DPO transformations of G by ρ (below left), one with (m^+, k^+, n^+, f, g) and the other with (m^-, k^-, n^-, f, g) , and two DPO transformations of G by ρ' (below right), one with (m_1, k', n', f'_1, g') and the other with (m_2, k', n', f'_2, g') .



The following result reveals the relationship induced by morphisms $\sigma: \rho \to \rho'$ on the corresponding direct DPO transformations.

Proposition 3.6. *If* \mathscr{C} *is the category of graphs,* $\sigma : \rho \to \rho'$ *is a morphism in* \mathscr{R}_{DPO} *,* $m : \rho'L \to G$ *and* $m \circ \sigma_1 : \rho L \to G$ *have pushout complements as below, then there is a unique graph morphism d such that*



commutes.

The existence of d means that all items marked for removal by $m \circ \sigma_1$, i.e., removed by the subrule ρ , are also removed by ρ' . In Example 3.5 we have $f = 1_G$, hence with $m = m_i$ we get $d = f_i'$. We also see that there are no morphisms between the results of the transformations of G by ρ and ρ' , in either direction. This is due to the fact that subrules remove less, but also add less. Hence contrary to Global Transformations, subsumptions of rules cannot be deduced from the properties of the transformation functions (from \mathscr{C} to \mathscr{C}) they induce.

Definition 3.7 (categories \mathcal{D}_{DPO} , \mathcal{D}_{DPOm} , functors R_{DPO} , R_{DPOm}). Let **dt** be the category generated by the graph

$$\begin{array}{ccc}
L & \longleftarrow & K & \stackrel{r}{\longrightarrow} & R \\
m \downarrow & & \downarrow k & \downarrow n \\
G & \longleftarrow & D & \stackrel{g}{\longrightarrow} & H
\end{array}$$

with relations $m \circ l = f \circ k$ and $n \circ r = g \circ k$. A *direct DPO-transformation* in \mathscr{C} is a functor $\delta : \mathbf{dt} \to \mathscr{C}$ such that δl is monic and the two squares $(\delta l, \delta m, \delta k, \delta f)$, $(\delta r, \delta n, \delta k, \delta g)$ are pushouts.

Let \mathscr{D}_{DPO} be the category whose objects are direct DPO-transformations in a category \mathscr{C} and whose morphisms $\mu:\delta\to\delta'$ are 4-tuples $(\mu_1,\mu_2,\mu_3,\mu_4)$ of \mathscr{C} -morphisms such that μ_4 is monic, the following diagram

$$\begin{array}{c|c}
\delta L & \stackrel{\delta l}{\longleftarrow} \delta K & \stackrel{\delta r}{\longrightarrow} \delta R \\
\delta' L & \stackrel{\delta' l}{\longleftarrow} \delta' K & \stackrel{\mu_2}{\longrightarrow} \delta' R \\
\delta' K & \stackrel{\delta' r}{\longrightarrow} \delta' K & \stackrel{\delta' r}{\longrightarrow} \delta' R \\
\delta' M & \stackrel{=}{\longrightarrow} \delta' K & \stackrel{\delta' r}{\longrightarrow} \delta D \\
\delta' G & \stackrel{=}{\longleftarrow} \delta' D
\end{array}$$

commutes and the top left square is a pullback, with obvious composition and identities. Let R_{DPO} be the obvious functor from \mathscr{D}_{DPO} to \mathscr{R}_{DPO} , i.e. such that $(R_{DPO}\delta)L=\delta L$ etc. and $R_{DPO}\mu=(\mu_1,\mu_2,\mu_3)$. Let \mathscr{D}_{DPOm} be the full subcategory of \mathscr{D}_{DPO} whose objects are the direct transformations δ such that δm is monic, and let $R_{DPOm}: \mathscr{D}_{DPOm} \to \mathscr{R}_{DPOm}$ be the corresponding restriction of R_{DPO} .

4 Global Coherent Transformations

The result of simultaneous rewriting will be computed exclusively from data extracted from all relevant direct transformations as follows: we extract the span $D \stackrel{k}{\leftarrow} K \stackrel{r}{\rightarrow} R$ from which the result of the transformation is obtained (as its pushout), and we also keep the link $G \stackrel{f}{\leftarrow} D$ to the input G.

Definition 4.1 (category \mathscr{C}_{pt} , functors In, P_{DPOm}). Let **pt** be the category generated by the graph

$$G \xleftarrow{\quad f \quad} D \xleftarrow{\quad k \quad} K \xrightarrow{\quad r \quad} R$$

For any category \mathscr{C} , the category \mathscr{C}_{pt} of *partial transformations* has as objects functors $\tau : \mathbf{pt} \to \mathscr{C}$, and as morphisms $v : \tau \to \tau'$ triples (v_1, v_2, v_3) such that

$$\tau G \stackrel{\tau f}{\longleftarrow} \tau D \stackrel{\tau k}{\longleftarrow} \tau K \stackrel{\tau r}{\longrightarrow} \tau R$$

$$= \begin{vmatrix} v_1 \\ v_2 \end{vmatrix} \qquad \begin{vmatrix} v_3 \\ \tau' G \stackrel{t}{\longleftarrow} \tau' D \stackrel{t}{\longleftarrow} \tau' K \stackrel{\tau r}{\longrightarrow} \tau' R$$

commutes in \mathscr{C} , with obvious composition and identities.

Let $In : \mathscr{C}_{pt} \to |\mathscr{C}|$ be the *input functor* defined as $In\tau = \tau G$. Let $P_{DPO} : \mathscr{D}_{DPO} \to \mathscr{C}_{pt}$ and $P_{DPOm} : \mathscr{D}_{DPOm} \to \mathscr{C}_{pt}$ be the obvious functors.

Using inverse images of the functors P_{DPOm} and R_{DPOm} we can easily focus on the direct transformations of concern (and the morphisms between them), i.e., the transformations of a graph by a rule system.

Definition 4.2 (Rewriting Environments, rule systems, notations D_{δ} , $\pi_1 \mu \ldots$). For any category \mathscr{C} , a *Rewriting Environment* for \mathscr{C} consists of a category \mathscr{D} of *direct transformations*, a category \mathscr{R} of *rules* and two functors

$$\mathscr{R} \xleftarrow{\mathsf{R}} \mathscr{D} \xrightarrow{\mathsf{P}} \mathscr{C}_{pt}$$

A *rule system* in a Rewriting Environment is a category $\mathscr S$ with an embedding $I: \mathscr S \to \mathscr R$ (alternately, $\mathscr S$ is a subcategory of $\mathscr R$ and I is the inclusion functor).

Given a rule system and an *input* \mathscr{C} -object G, we build the categories $\mathscr{D}|_{G}$, $\mathscr{D}|_{G}^{\mathscr{S}}$ and functors I_{G} , $I_{\mathscr{S}}$, $R|_{G}^{\mathscr{S}}$ as meets of previous functors:

For any $\delta \in \mathcal{D}|_G^{\mathscr{S}}$ we write D_{δ} for $(\mathsf{Pl}_G \mathsf{I}_{\mathscr{S}} \delta) D$ and similarly f_{δ} etc. For any $\mu : \delta \to \delta'$ in $\mathcal{D}|_G^{\mathscr{S}}$ we write $\pi_1 \mu$ for the first coordinate of $\mathsf{Pl}_G \mathsf{I}_{\mathscr{S}} \mu$ and similarly $\pi_2 \mu$, $\pi_3 \mu$.

Example 4.3. For \mathscr{S} we take the subcategory $\rho \xrightarrow{\sigma^+} \rho'$ of \mathscr{R}_{DPO} . To the matchings m_1 and m_2 of

ho' in G correspond two² transformations in \mathscr{D}_{DPOm} that will be denoted δ'_1 and δ'_2 (their are depicted on the right of Example 3.5 with $f'_i = \delta'_i$ f etc.). To the matchings m^+ and m^- of ρ in G correspond another two transformations denoted δ^+ and δ^- (on the left of Example 3.5). To each i=1,2 correspond one morphism $\mu_i^+:\delta^+\to\delta'_i$ such that $\mathsf{R}_{DPOm}\mu_i^+=\sigma^+$ and one morphism $\mu_i^-:\delta^-\to\delta'_i$ such that $\mathsf{R}_{DPOm}\mu_i^-=\sigma^-$.

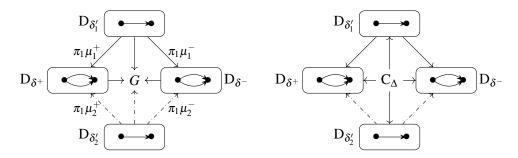
As stated above we will use the partial transformations that are accessible from $\mathcal{D}|_G^{\mathcal{F}}$ through $P \circ I_G \circ I_{\mathcal{F}}$ (a restriction of P). We first need to build an interface (often called *context* by analogy with term rewriting) between the input G and the expected output H. In Parallel Coherent Transformation [2] the context is obtained as a limit of the morphisms $f_{\delta}: D_{\delta} \to G$ for all δ in a set Δ of direct transformations, hence of a diagram that is a sink to G and thus corresponds to a discrete diagram in $\mathcal{E} \setminus G$. In Global Coherent Transformations the context (denoted C_{Δ} below) is obtained similarly, but now Δ is a category and the diagram contains the morphisms $\pi_1 \mu : D_{\delta'} \to D_{\delta}$ for all $\mu : \delta \to \delta'$ in Δ .

Definition 4.4 (functor $\mathsf{P}_{\Delta}^{\leftarrow}$, limit $f_{\Delta}:\mathsf{C}_{\Delta}\to G$, limit cone γ_{Δ}). For any subcategory Δ of $\mathscr{D}|_{G}^{\mathscr{S}}$ let $\mathsf{P}_{\Delta}^{\leftarrow}:\Delta^{\mathrm{op}}\to\mathscr{C}\setminus G$ be the contravariant functor that maps every $\delta\in\Delta$ to $f_{\delta}:\mathsf{D}_{\delta}\to G$ and every morphism μ of Δ to $\pi_{1}\mu$. Let $f_{\Delta}:\mathsf{C}_{\Delta}\to G$ be the limit of $\mathsf{P}_{\Delta}^{\leftarrow}$ and γ_{Δ} be the limit cone from f_{Δ} to $\mathsf{P}_{\Delta}^{\leftarrow}$.

Note that if Δ is empty then the limit f_{Δ} of the empty diagram is the terminal object of $\mathscr{C} \setminus G$, that is 1_G , hence $C_{\Delta} = G$.

Example 4.5. Let $\Delta = \mathscr{D}_{DPOm}|_G^{\mathscr{S}}$. The diagram on the left below corresponds to the functor $\mathsf{P}_\Delta^\leftarrow$ together with the morphisms $\mathsf{f}_{\delta_i^\pm} : \mathsf{D}_{\delta_i^\pm} \to G$ (objects in $\mathscr{C} \setminus G$). The limit of this diagram yields $\mathsf{C}_\Delta = \bullet$ and the limit cone is represented on the right.

²We consider transformations only up to isomorphisms, see Footnote 3.

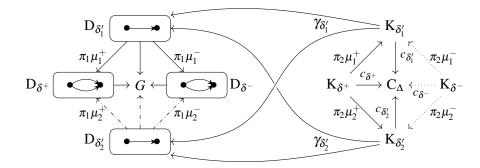


We next need to check that the transformations in Δ do not conflict with each other, i.e., that for all $\delta \in \Delta$ the image of K_{δ} in G is not only preserved by δ (in D_{δ}) but also by all other transformations $\delta' \in \Delta$. This is ensured by finding (natural) cones from these K_{δ} to the $D_{\delta'}$, which we shall formulate with P_{Δ}^{\leftarrow} , hence in $\mathscr{C} \setminus G$.

Definition 4.6 (coherent system of cones, morphisms c_{δ} , global coherence). A *coherent system of cones* for Δ is a set of cones γ_{δ} from $f_{\delta} \circ k_{\delta}$ to $\mathsf{P}_{\Delta}^{\leftarrow}$ such that $\gamma_{\delta} \delta = k_{\delta}$ for all $\delta \in \Delta$, and $\gamma_{\delta} = \gamma_{\delta'} \circ \pi_{2}\mu$ for all $\mu : \delta \to \delta'$ in Δ . Δ is *globally coherent* if there exists a coherent system of cones for Δ . We then let $c_{\delta} : f_{\delta} \circ k_{\delta} \to f_{\Delta}$ be the unique morphism in $\mathscr{C} \setminus G$ such that $\gamma_{\delta} = \gamma_{\Delta} \circ c_{\delta}$.

Note that if $\gamma_{\delta'}$ is a cone from $f_{\delta'} \circ k_{\delta'}$ to P_{Δ}^{\leftarrow} then $\gamma_{\delta'} \circ \pi_2 \mu$ is a cone from $f_{\delta} \circ k_{\delta}$ to P_{Δ}^{\leftarrow} , hence global coherence means that we should find cones for the direct transformations (say δ'_1 and δ'_2) from the top rules, with the constraint that they should be compatible on common subtransformations $\delta'_1 \leftarrow \delta \rightarrow \delta'_2$. If $\mathscr S$ and therefore Δ are discrete, this amounts to parallel coherence, see [2].

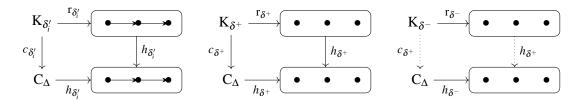
Example 4.7. On our example the four graphs $K_{\delta_i^{\pm}}$ are equal to \bullet . It is easy to build the four cones from the four morphisms from $K_{\delta_i'}$ to $D_{\delta_i'}$ depicted below, by composing them with the $\pi_1 \mu_i^{\pm}$ on the left and the $\pi_2 \mu_i^{\pm}$ on the right. On the right are also depicted the morphisms $c_{\delta_i^{\pm}}$.



Definition 4.8 (morphisms $h_{\delta}: C_{\Delta} \to H_{\delta}$). If Δ is globally coherent for all $\delta \in \Delta$ then c_{δ} can be viewed as a \mathscr{C} -morphism $c_{\delta}: K_{\delta} \to C_{\Delta}$, and we consider the following pushout in \mathscr{C} .

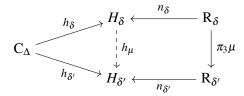
$$\begin{array}{c|c}
K_{\delta} & \xrightarrow{i_{\delta}} & R_{\delta} \\
c_{\delta} \downarrow & & \downarrow n_{\delta} \\
C_{\Delta} & \xrightarrow{h_{\delta}} & H_{\delta}
\end{array}$$

Example 4.9. On our example we get:



We now turn h into a functor.

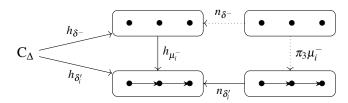
Proposition 4.10. For every $\mu: \delta \to \delta'$ in Δ there exists a unique h_{μ} such that



commutes.

Corollary 4.11. By unicity we get $h_{\mu' \circ \mu} = h_{\mu'} \circ h_{\mu}$.

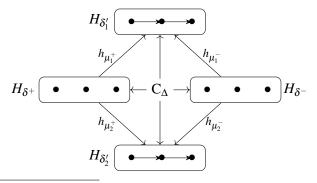
Example 4.12. For instance the morphisms $\mu_i^-: \delta^- \to \delta_i'$ yield the morphisms $h_{\mu_i^-}$ depicted below.



Definition 4.13 (functor $\mathsf{P}_{\Delta}^{\rightarrow}$, colimit $h_{\Delta}: \mathsf{C}_{\Delta} \to H_{\Delta}$). If Δ is globally coherent let $\mathsf{P}_{\Delta}^{\rightarrow}: \Delta \to \mathsf{C}_{\Delta} \setminus \mathscr{C}$ be the functor defined by $\mathsf{P}_{\Delta}^{\rightarrow} \delta = h_{\delta}$ (interpreted as an object of $\mathsf{C}_{\Delta} \setminus \mathscr{C}$) and $\mathsf{P}_{\Delta}^{\rightarrow} \mu = h_{\mu}$ for all $\mu: \delta \to \delta'$ in Δ . Let $h_{\Delta}: \mathsf{C}_{\Delta} \to H_{\Delta}$ be the colimit³ of $\mathsf{P}_{\Delta}^{\rightarrow}$, then the \mathscr{C} -span $G \xleftarrow{f_{\Delta}} \mathsf{C}_{\Delta} \xrightarrow{h_{\Delta}} H_{\Delta}$ is a *Global Coherent Transformation by* Δ .

If Δ is empty then the colimit h_{Δ} of the empty diagram is the initial object of $C_{\Delta} \setminus \mathscr{C}$, that is $1_{C_{\Delta}}$, hence $H_{\Delta} = C_{\Delta} = G$. Generally, the functor $\mathsf{P}_{\Delta}^{\rightarrow}$ depends on the choice of cones γ_{δ} for $\delta \in \Delta$, hence h_{Δ} is not determined by Δ .

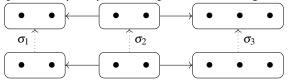
Example 4.14. The functor $P_{\Lambda}^{\rightarrow}$ applied to Δ yields the following diagram



³ Global Coherent Transformations are obtained as limits and colimits of diagrams whose index category is Δ , hence are not affected by isomorphisms in Δ , which can therefore be replaced by its skeleton.

The leftmost vertices of these five graphs are connected as images or preimages of each other, and similarly for the five right vertices, and the four middle vertices. The four edges are not likewise connected, hence the colimit of this diagram is the expected result H= . We therefore see that the two middle vertices created in δ_1' and δ_2' are merged by their common subtransformation δ^+ (or δ^-), but also that the two middle vertices created in δ^+ and δ^- are merged by their common upper transformation δ_1' (or δ_2').

If we apply \mathscr{S} to the graph $G' = \bullet$ then rule ρ' does not apply to G' and hence the two matchings of ρ in G' apply independently, thus adding two vertices to G'. We can merge them by adding to \mathscr{S} the following rule morphism $\sigma : \rho \to \rho$ that swaps the left and right vertices:



We have $\sigma^2 = 1_\rho$ hence σ is an automorphism of ρ . Adding σ to $\mathscr S$ means that ρ will be applied modulo automorphisms; this generalizes to the algebraic context the notion of Parallel Rewriting Modulo Automorphism devised in an algorithmic approach in [1].

Since
$$\sigma^+ \circ \sigma = \sigma^-$$
 and $\sigma^- \circ \sigma = \sigma^+$, the new rule system is $\mathscr{S}' = \sigma \bigcap_{\sigma^-} \rho \xrightarrow{\sigma^+} \rho'$. If we apply

$$\mathscr{S}'$$
 to G , we add two new morphisms in $\mathscr{D}_{\mathrm{DPOm}}|_{G}^{\mathscr{S}}$, i.e, $\Delta' = \mathscr{D}_{\mathrm{DPOm}}|_{G}^{\mathscr{S}'} = \delta_{\perp}^{+} \delta_{\perp}^{-}$. It is easy δ'_{2}

to see that the Global Coherent Transformation by Δ' is the same as above with Δ .

We finally prove that, apart from this mechanism of sharing common transformations, isolated transformations always subsume their subtransformations, so that morphisms in \mathcal{R} are rule subsumptions as intended.

Proposition 4.15. If Δ' is restricted to δ' and Δ to $\mu: \delta \to \delta'$ (or more generally if δ' is terminal in Δ) then Δ and Δ' are globally coherent and $H_{\Delta} \simeq H_{\Delta'}$.

5 Rewriting Environments and Their Properties

Definitions 3.2, 3.7 and 4.1 provide two Rewriting Environments that we may call DPO and DPOm. By Proposition 3.6 it is obvious that R_{DPO} and R_{DPOm} are faithful when \mathscr{C} is the category of graphs. This is easily seen to generalize to all adhesive categories [12]. In fact, we can generalize Proposition 3.6 as follows:

Proposition 5.1. If $\mathscr C$ is adhesive, $\delta, \delta' \in \mathscr D_{DPO}$ and $\sigma: \mathsf R_{DPO}\delta \to \mathsf R_{DPO}\delta'$ such that $\delta m = \delta' m \circ \sigma_1$ then there exists a unique $\mu: \delta \to \delta'$ such that $\mathsf R_{DPO}\mu = \sigma$.

A property that one might reasonably expect is that when a rule applies and yields a direct transformation then its subrules also apply and yield subtransformations. We express this by means of the following notion.

Definition 5.2 (right-full). A functor $F: \mathscr{A} \to \mathscr{B}$ is right-full⁴ if for all $a' \in \mathscr{A}$, all $b \in \mathscr{B}$ and all

⁴This is named after the symmetric definition of *left-full* functors in [18, p. 63].

 $g: b \to Fa'$, there exist $a \in \mathcal{A}$ and $f: a \to a'$ such that Ff = g.

It is obvious that right-fullness is closed by composition.

Lemma 5.3. I_G is a right-full embedding.

Proposition 5.4. If R is right-full (resp. faithful) then so is $R|_G^{\mathscr{S}}$ for every rule system \mathscr{S} and $G \in \mathscr{C}$.

Hence when R is right-full and faithful every morphism $\sigma: \rho \to \rho'$ in $\mathscr S$ is reflected by a morphism in $\mathscr D|_G^\mathscr S$ whenever ρ' is reflected by a direct transformation δ' (i.e., whenever ρ' applies to G), and this morphism is uniquely determined by σ and δ' . According to Proposition 3.4 it is obvious that R_{DPOm} is right-full (when $\mathscr E$ is the category of graphs). It is easy to see that R_{DPO} is not right-full (since σ_1 may not be monic).

We now consider the case of Sesqui-Pushouts [5]. It is based on the notion of final pullback complement that allows not only to remove parts of the input G but also to make copies of parts of G (when ρ 1 below is not monic).

Definition 5.5. For any category \mathscr{C} , let \mathscr{R}_{SqPO} be the category whose objects are the functors $\rho : \mathbf{sp} \to \mathscr{C}$ and morphisms $\sigma : \rho \to \rho'$ are triples $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ of \mathscr{C} -morphisms such that

$$\rho L \stackrel{\rho l}{\longleftarrow} \rho K \xrightarrow{\rho r} \rho R$$

$$\sigma_{l} \downarrow \qquad \qquad \downarrow \sigma_{2} \qquad \qquad \downarrow \sigma_{3}$$

$$\rho' L \stackrel{\rho l}{\longleftarrow} \rho' K \xrightarrow{\rho' r} \rho' R$$

commutes in \mathscr{C} and the left square is a pullback, with obvious composition and identities. Let \mathscr{R}_{SqPOm} be the subcategory with morphisms σ such that σ_1 and σ_2 are monics.

A direct SqPO-transformation in $\mathscr C$ is a functor $\delta: \mathbf{dt} \to \mathscr C$ such that $\delta f, \delta k$ is a final pullback complement of δm , δl , and $(\delta r, \delta n, \delta k, \delta g)$ is a pushout.

Proposition 5.6. For every direct SqPO-transformations δ , δ' with corresponding SqPO-rules ρ , ρ' , every $\sigma: \rho \to \rho'$ in \Re_{SqPO} such that $\delta m = \delta' m \circ \sigma_1$, there exists a unique $\mathscr C$ -morphism d such that

$$\begin{array}{c|c}
\delta L & \stackrel{\delta l}{\longleftarrow} \delta K \\
\delta' L & \stackrel{\delta' l}{\longleftarrow} \delta' K & \stackrel{\delta c}{\longrightarrow} \delta D \\
\delta' m & \stackrel{\delta}{\longrightarrow} \delta' k & \stackrel{\delta c}{\longrightarrow} \delta D \\
\delta' G & \stackrel{\delta' c}{\longleftarrow} \delta' D
\end{array}$$

commutes.

Here the existence of d means not only that ρ' removes at least as much as its subrule ρ , but also that it makes at least as many copies of the items of G. It is then easy to define the category \mathscr{D}_{SqPO} of direct SqPO-transformations, the category \mathscr{D}_{SqPOm} of direct SqPO-transformations with monic matches and faithful functors $\mathsf{R}_{SqPO}: \mathscr{D}_{SqPO} \to \mathscr{R}_{SqPO}$ and $\mathsf{R}_{SqPOm}: \mathscr{D}_{SqPOm} \to \mathscr{R}_{SqPOm}$, as in Definition 3.7. We leave this to the reader.

Proposition 5.7. In the category of graphs R_{SqPOm} is right-full.

We next consider the case of PBPO-rules [4], that also enables copies of parts of G but with better control of the way they are linked together and to the rest of G. The drawback is that matchings of the left-hand side of a rule into G should be completed with a co-match from G to a given type of the left-hand side.

Definition 5.8 (category \mathcal{D}_{PBPO} , direct PBPO-transformations). Let **pb** be the category generated by the graph

$$\begin{array}{ccc} L \xleftarrow{l} & K \xrightarrow{r} R \\ t_L \downarrow & \downarrow t_K & \downarrow t_R \\ T_L \xleftarrow{l} & T_K \xrightarrow{v} T_R \end{array}$$

with relations $t_L \circ l = u \circ t_K$ and $t_R \circ r = v \circ t_K$. A *PBPO-rule* in $\mathscr C$ is a functor $\rho : \mathbf{pb} \to \mathscr C$. A morphism $\sigma : \rho \to \rho'$ is a 5-tuple $(\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5)$ of $\mathscr C$ -morphisms such that

$$\rho L \xleftarrow{\rho l} \rho K \xrightarrow{\rho r} \rho R$$

$$\sigma_{l} \downarrow \rho t_{L} \quad \sigma_{2} \downarrow \rho t_{K} \downarrow \sigma_{3}$$

$$\rho' L \xleftarrow{\rho' l} \rho' K \xrightarrow{\rho' r} \rho' R$$

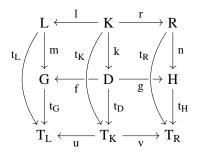
$$\rho' t_{L} \downarrow \sigma_{4} \downarrow \rho' t_{K} \downarrow \sigma_{5}$$

$$\rho' t_{L} \downarrow \sigma_{4} \downarrow \rho' t_{K} \downarrow \sigma_{5}$$

$$\rho' T_{L} \xleftarrow{\rho' u} \rho' T_{K}$$

commutes. Let \mathcal{D}_{PBPO} be the category of morphisms of PBPO-rules on \mathscr{C} , with the obvious composition and identities.

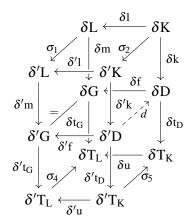
Let **pbt** be the category generated by



with all commuting relations, a *direct PBPO-transformation* in $\mathscr C$ is a functor $\delta : \mathbf{pbt} \to \mathscr C$ such that $(\delta f, \delta t_G, \delta t_D, \delta u)$ is a pullback and $(\delta r, \delta n, \delta k, \delta g)$ is a pushout.

To every direct PBPO-transformation obviously corresponds a PBPO-rule and a partial transformation.

Proposition 5.9. For every direct PBPO-transformations δ , δ' with corresponding PBPO-rules ρ , ρ' , every $\sigma: \rho \to \rho'$ in \mathcal{D}_{PBPO} such that $\delta m = \delta' m \circ \sigma_1$ and $\delta t_G = \sigma_4 \circ \delta' t_G$, there exists a unique \mathscr{C} -morphism d such that



commutes.

We leave it to the reader to define a Rewriting Environment for PBPO-rules and transformations, with a right-full faithful functor $R_{PBPO}: \mathscr{D}_{PBPO} \to \mathscr{R}_{PBPO}$ (provided \mathscr{C} has pushouts and pullbacks).

We finally observe that if $\mathscr{R}_1 \stackrel{\mathsf{R}_1}{\longleftarrow} \mathscr{D}_1 \stackrel{\mathsf{P}_1}{\longrightarrow} \mathscr{C}_{pt}$ and $\mathscr{R}_2 \stackrel{\mathsf{R}_2}{\longleftarrow} \mathscr{D}_2 \stackrel{\mathsf{P}_2}{\longrightarrow} \mathscr{C}_{pt}$ are Rewriting Environments then so is $\mathscr{R}_1 + \mathscr{R}_2 \stackrel{\mathsf{R}_1 + \mathsf{R}_2}{\longleftarrow} \mathscr{D}_1 + \mathscr{D}_2 \stackrel{[\mathsf{P}_1,\mathsf{P}_2]}{\longrightarrow} \mathscr{C}_{pt}$. It is therefore possible to mix rules of different approaches to transform a graph, though of course rules of distinct approaches cannot subsume each other.

6 Conclusion and Future Work

The general notion of a rule subsumption is given through Rewriting Environments, where abstract categories of rules and direct transformations are related to a specific category of partial transformations \mathcal{C}_{pt} . Global Coherent Transformation are built from partial transformations in a way pertaining both to Parallel Coherent Transformation, by the use of limits on local contexts, and to Global Transformations, by applying categories of rules.

Other notions of subrules exist in Graph Transformations. A common notion comes from representing sequences of transformations as a single transformation (horizontal composition); this is relevant to sequential rewriting. Another notion is known as vertical composition (or rule instantiation): the result of applying a rule to a graph is reified as a rule that can be applied to a new graph (these two notions can be mixed as in [15]). This appears to be a particular case of subsumption where the induced direct transformations are parallel (same context, same result).

We have provided Rewriting Environments for the most common approaches to algebraic rewriting, except the Single Pushout [14], which will be done in a forthcoming paper. We also intend to show that Global Transformations can be obtained by a suitable environment (except when Δ is empty). We also need to further analyze the properties of the DPO Rewriting Environment: when $\mathscr C$ is an adhesive category it is an open question whether R_{DPOm} is right-full.

It may seem strange that, through \mathscr{C}_{pt} , rules are not assumed to have left-hand sides and direct transformations are not assumed to use matchings. The notion of Rewriting Environment is as simple as required to define Global Coherent Transformations, but does not guarantee some properties that the user might reasonably expect. In particular it does not prevent the categories \mathscr{R} and \mathscr{D} from being discrete (but this is correct if no subsumption is possible). In the future we will enhance Rewriting Environments with a notion of matching in order to better understand their structure.

Acknowledgements We thank Rachid Echahed for helpful discussions and an anonymous reviewer in particular for suggesting the generalization of Proposition 4.15.

References

[1] T. Boy de la Tour & R. Echahed (2020): *Parallel Rewriting of Attributed Graphs*. Theoretical Computer Science 848, pp. 106–132, doi:10.1016/j.tcs.2020.09.025.

- [2] T. Boy de la Tour & R. Echahed (2021): Parallel Coherent Graph Transformations. In: Recent Trends in Algebraic Development Techniques, 25th International Workshop, WADT 2020, Revised Selected Papers, LNCS 12669, Springer, pp. 75–97.
- [3] Thierry Boy de la Tour (2023): Algebraic Monograph Transformations, doi:10.48550/ARXIV.2303.01137.
- [4] Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric Prost & Leila Ribeiro (2019): *The PBPO graph transformation approach. J. Log. Algebr. Meth. Program.* 103, pp. 213–231.
- [5] Andrea Corradini, Tobias Heindel, Frank Hermann & Barbara König (2006): *Sesqui-Pushout Rewriting*. In: *ICGT 2006*, *LNCS* 4178, Springer, pp. 30–45.
- [6] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel & Michael Löwe (1997): Algebraic Approaches to Graph Transformation Part I: Basic Concepts and Double Pushout Approach. In Grzegorz Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, World Scientific, pp. 163–246, doi:10.1142/9789812384720_0003.
- [7] Hartmut Ehrig (1979): *Introduction to the algebraic theory of graph grammars (a survey)*. In Volker Claus, Hartmut Ehrig & Grzegorz Rozenberg, editors: *Graph-Grammars and Their Application to Computer Science and Biology*, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–69.
- [8] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): *Fundamentals of Algebraic Graph Transformation*. Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/3-540-31188-2.
- [9] Alexandre Fernandez, Luidnel Maignan & Antoine Spicher (2021): Cellular Automata and Kan Extensions. In Alonso Castillo-Ramirez, Pierre Guillon & Kévin Perrot, editors: 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2021, OASIcs 90, Schloss Dagstuhl Leibniz-Zentrum für Informatik, pp. 7:1–7:12, doi:10.4230/OASIcs.AUTOMATA.2021.7.
- [10] Alexandre Fernandez, Luidnel Maignan & Antoine Spicher (2022): *Non-Determinism in Lindenmayer Systems and Global Transformations*. In Stefan Szeider, Robert Ganian & Alexandra Silva, editors: 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, LIPIcs 241, Schloss Dagstuhl Leibniz-Zentrum für Informatik, pp. 49:1–49:13, doi:10.4230/LIPIcs.MFCS.2022.49.
- [11] H. Herrlich & G. E. Strecker (1973): Category Theory. Allyn and Bacon.
- [12] Stephen Lack & Pawel Sobocinski (2005): *Adhesive and quasiadhesive categories*. Informatique Théorique et Applications 39(3), pp. 511–545.
- [13] F. W. Lawvere (1963): Functional Semantics of Algebraic Theories. Ph.D. thesis, Columbia University.
- [14] Michael Löwe (1993): Algebraic Approach to Single-Pushout Graph Transformation. Theoretical Computer Science 109, pp. 181–224.
- [15] Michael Löwe (2015): *Polymorphic Sesqui-Pushout Graph Rewriting*. In Francesco Parisi-Presicce & Bernhard Westfechtel, editors: *Graph Transformation 8th International Conference, ICGT 2015*, *Lecture Notes in Computer Science* 9151, Springer, pp. 3–18, doi:10.1007/978-3-319-21145-9_1.
- [16] Saunders Mac Lane (1997): Categories for the Working Mathematician, 2nd edition. Graduate Texts in Mathematics 5, Springer-Verlag, New York. (1st ed., 1971).
- [17] Luidnel Maignan & Antoine Spicher (2015): Global Graph Transformations. In Detlef Plump, editor: Proceedings of the 6th International Workshop on Graph Computation Models, CEUR Workshop Proceedings 1403, CEUR-WS.org, pp. 34–49. Available at http://ceur-ws.org/Vol-1403/paper4.pdf.
- [18] Peter Selinger (1997): Functionality, Polymorphism, and Concurrency: a Mathematical Investigation of Programming Paradigms. Ph.D. thesis, University of Pennsylvania.