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Abstract—Partial Markov categories are an axiomatisation
of Markov categories with partiality. Partiality allows us to
express observations and constraints, but the extension of Markov
categories to the partial setting requires some design choices,
like imposing an extra axiom on conditionals. We present partial
Markov categories and investigate some conceptual consequences
of these design choices that extend our previous work: “Evidential
Decision Theory via Partial Markov Categories” accepted for
publication at the symposium on Logic in Computer Science
2023 (LiCS’23).

1 PartialMarkov categories
Partial Markov categories [DR23] are an axiomatisation

of Markov categories [Fri20] with partiality. Like Markov
categories, partial Markov categories are symmetric monoidal
categories with a copy-discard structure [CG99] and condition-
als (Figure 1, [Fri20]). However, morphisms are not required
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Fig. 1: Conditionals require that a stochastic process f be split
into a marginal m and a conditional c. In Markov categories,
this is equivalent to the definition in [Fri20].

to be total: discarding the output of a morphism may still have
an effect and differ from just discarding its input.

Following the interpretation of morphisms in Markov cat-
egories, morphisms in partial Markov categories represent
stochastic processes that may “fail”. Partiality increases the
expressive power of a theory of stochastic processes, allowing
to express observations and constraints (Section 2), but this
extension also requires some design choices. Conditionals
in Markov categories are, like all other morphisms, total.
This ensures some convenient properties about marginals: the
marginal of f : X → A⊗B on A is obtained by discarding the B
output, f # (id⊗ ). In order to keep some of these convenient
properties we impose an extra condition on conditionals: we
ask them to be quasi-total.

Definition 1.1. A morphism f : X → Y in a copy-discard
category is quasi-total if f # = # (( f # ) ⊗ ( f # )).
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Definition 1.2 ([DR23]). A partial Markov category is a copy-
discard category with quasi-total conditionals.

In cartesian restriction categories [CL02; CL03; CL07] the
domain of definition of a morphism f is defined as ( f # ):

discarding the output of f gives the inputs on which f does not
fail. In partial Markov categories, discarding the output of a
morphism, ( f # ), corresponds to the probability of failure of
f . With this interpretation, quasi-totality means determinism
of the probability of failure, i.e. ( f # ) can be copied: on each
input, the channel can either certainly fail, or never fail and
return a total distribution. The inputs on which the channel
never fails are its domain of definition.

Despite this interpretation, the definition of quasi-totality
still requires some justification. If we asked conditionals to
be total, like in Markov categories, this would be too strong
because they would fail to exist even in the simplest example
of finitary subdistributions (Example 1.4). On the other hand,
leaving conditionals unrestricted would prevent us from having
some properties that they have in Markov categories. Quasi-
totality seems a sweet spot, and it allows us to prove that
marginals are given by discarding one of the inputs, as in
Markov categories (see Proposition 3.14 in [DR23]).

Example 1.3. Markov categories with conditionals are exactly
partial Markov categories where all maps are total.

Example 1.4. The Kleisli category of the finitary subdistribu-
tion monad, Kl(D≤1), is a partial Markov category. Given a
morphism f : X → A ⊗ B, its marginal on A is

m(a | x) =
∑
b∈B

f (a, b | x) and m(⊥ | x) = f (⊥ | x) ,

and a conditional with respect to A is

c(b | a, x) =


f (a, b | x)
m(a | x)

, if m(a | x) , 0;

0, otherwise;

c(⊥ | a, x) =

0, if m(a | x) , 0;
1, otherwise.

Example 1.5. The category of continuous subdistributions
on standard Borel spaces, BorelStoch≤1, is a partial Markov
category [DR23].

Some partial Markov categories have an extra piece of
structure that may be interpreted as equality checks. We call
these discrete partial Markov categories following discrete
cartesian restriction categories [CGH12; Di +21].

Definition 1.6. A copy-discard category C has comparators
if every object X has a morphism, X : X ⊗ X → X, that
is uniform, commutative, associative and satisfies the partial
Frobenius axioms below with the copy-discard structure.
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Definition 1.7. A discrete partial Markov category is a copy-
discard category with conditionals and comparators. In other
words, it is a partial Markov category with comparators.

Example 1.8. The Kleisli category of the finitary subdistri-
bution monad, Kl(D≤1), is a discrete partial Markov category.
The comparator X : X ⊗ X → X is given by

X(x | x1, x2) =

1, if x = x1 = x2;
0, otherwise.

2 Updates and observations via constraints

The structure and axioms of discrete partial Markov cate-
gories can express the process of updating a stochastic model
on observations. Updating on an observation a : I → A means
to restrict the model f : X → A to scenarios that are compatible
with this observation.

f

a

A
X

When the observation is deterministic, Bayes’ theorem applies.

Theorem 2.1 (Synthetic Bayes, Theorem 3.28 in [DR23]). In
a discrete partial Markov category, observing a deterministic
y : I → Y from a prior distribution σ : I → X through a
channel c : X → Y is the same, up to scalar, as evaluating
the Bayesian inversion of the channel c†σ(y).

c

y

σ
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Proof. We employ string diagrams.
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cσ
c†σ X

(ii)
=

y

cσ

c†σ X

(iii)
=

cσ

y
y c†σ X

The equalities follow from: (i) quasi-total conditionals,
(ii) the partial Frobenius axioms (Definition 1.6), and (iii)
determinism of the observation y. □

All the structure and axioms of discrete partial Markov cate-
gories are necessary for this result: the comparator structure for
constraining the model to be compatible with the observation
and conditionals for propagating this constraint to the prior
and update it.

3 Towards unique conditionals

If a Markov category has unique conditionals, then it is a
preorder (Proposition 11.15 in [Fri20]). A similar collapse,
although less extreme, happens for partial Markov categories
(Proposition 3.15 in [DR23]). However, among all conditionals
in Kl(D≤1), one has a privileged position: the one defined in
Example 1.4. The only arbitrary choice in that definition is the
value of c(− | a, x) when m(a, x) = 0, as we could have chosen
any subdistribution on B. Choosing the subdistribution that
always fails gives a conditional with “minimal” information:
whenever there is an arbitrary choice to be made, it fails. Can
we characterise these “minimal” conditionals? They are the
minimal elements of a preorder on quasi-total morphisms.

Definition 3.1. For quasi-total morphisms f , g : X → A in a
partial Markov category, we say that f is a restriction of g,
f ≤ g, if # (g ⊗ ( f # )) = f .

g

f
= f

This defines a preorder on the quasi-total morphisms.

This preorder has been defined in cartesian restriction cate-
gories [CL02], where its interpretation is that f ≤ g whenever
f is a restriction of g on a smaller domain. In partial Markov
categories, this is not a preorder on all morphisms because it
is not reflexive in general: f ≤ f if and only if f is quasi-total.
This is a consequence of Proposition 3.5 in [DR23].

Definition 3.2. A partial Markov category has minimal con-
ditionals whenever, for every f : X → A ⊗ B, the preorder ≤
on its quasi-total conditionals has a minimal element.

Example 3.3. The Kleisli category of the finitary subdistribu-
tion monad Kl(D≤1) has minimal conditionals.

4 Future directions

We have defined a preorder on the set of conditionals
of morphisms in partial Markov categories. When this pre-
order has a minimal element, it gives a canonical choice
for conditionals. This happens in the Kleisli category of the
subdistribution monad, but more sophisticated examples, like
BorelStoch≤1, are left for further work. The conditions that
ensure the existence of minimal elements of this preorder also
remain to be explored.
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