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Introduction and Context: A common emergent theme within quantum information theory,
theoretical computer science, and applied category theory, has been the development of the concept
of a hole into-which parts of processes can be inserted as depicted in the following intuitive picture:
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.

Such instances can be seen within the study of quantum information processing [1–7], quantum
foundations [1–5, 8, 9], bidirectional programming [10–12], game-theory [13–16], machine learning
[17], open systems dynamics [18], and financial trading [19]. In all but the quantum case, the study
of such a concept has been restricted to the case of circuit diagrams into-which holes have been
punctured called combs. However, as discovered in quantum contexts, there are natural notions
of hole-into-which a process can be inserted which are not representable as circuit diagrams into
which holes have been punctured [20]. This is most clearly seen by considering the probabilistic
combination or quantum superposition of two such diagrams-with-holes which in either case puts
those holes into an indefinite compositional structure. Referred to in the quantum literature as
supermaps [2–4], also known as process matrices [8], such holes are often interpreted as regions
without a predetermined causal configuration. The development of the framework of quantum
supermaps has been used to formalise general theories of quantum devices as resources, and given
a broad setting in which the computational and information-processing advantages of quantum
causal structures can be studied [3, 21–28].

The motivation for this paper is to contribute towards the development of the formalisation of
supermaps on general monoidal categories [7,10,29,40]. Within physics the lack of such a general-
isation is a fundamental problem, a broad area of research into the foundations of physics is that
of the properties of operational (generalised) probabilistic theories [30–32], these are frameworks
within which physical theories can be studied in terms of their information processing capabili-
ties. Without a generalised approach to supermaps, we are without a framework for the study of
stronger-than-quantum correlations between causal structures. Perhaps more urgently, the answer
to the question of the appropriate definition of supermaps on arbitrary Hilbert spaces is currently
unclear [4, 9, 29].

Aims of The Manuscript: The concrete goal of this paper is to define a construction which
sends any symmetric monoidal category to a theory of supermaps on that monoidal category. To
be satisfied with such a construction we must have some goal-post features in mind that we would
expect to see.

Physical Features: There are some established definitions of supermaps which we would like
our constructions to recover. More concretely, superchannels [2] are typically accepted as the right
notion of supermap on the quantum channels, and superunitaries [33,34] are typically accepted as
the right notion of supermap on the unitaries.
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Compositional Features: We consider two categorical aspects of theories of supermaps; com-
position rules for insertion of input/output pairs into holes, and existence of supermaps which
implement the composition rules of the category they act on. Each of these aspects can be visu-
alised by trading informal pictures of supermaps with more formal circuit-diagrammatic ones in
which holes are drawn at the bottom, and input/output pairs are drawn at the top:

T

S

≈
S

T
, ◦ ≈ ◦ .

For the former aspect, composition along two or more formal (bold) wires is however forbidden
within these models, meaning that supermaps of this shape form not monoidal categories but
instead form a more restricted notion of polycategory [35]. Informally polycategories are theories
of processes with multiple inputs and outputs, but with composition permitted only along one wire
at a time. The latter aspect, is the familiar categorical notion of enrichment, identified previously as
a core feature of theories of supermaps [36]. It is enrichment which forbids multi-wire composition,
since when combined such concepts would result in the production of pathological time-loops as
can be seen in this simple intuitive example:

◦ ≈
◦

Cycle

SWAP

.

The main contribution of this paper is to develop a construction which assigns to each symmetric
monoidal category a model of black-box supermaps with the above features. Models exist which
either; are black-box but not applicable to all symmetric monoidal categories [37–39], or instead are
applicable to all symmetric monoidal categories but without being black-box enough to incorporate
quantum causal structures [7].

Methods and Results: In our approach we build on a recently introduced notion of locally-
applicable transformation [29]. A locally-applicable transformation of type S : [A, A′] −→ [B, B′]
on a symmetric monoidal category C is a family of functions SX,X′ : C(A ⊗ X, A′ ⊗ X ′) → C(B ⊗
X, B′ ⊗X ′) such that for all f, g then SX,X′((i⊗g)◦(ϕ⊗i)◦(i⊗f)) = (i⊗g)◦(SY,Y ′(ϕ)⊗i)◦(i⊗f).
For our construction we consider slots, which are families of functions so local that they commute
with all locally-applicable transformations, meaning that they can be formalised as central in the
premonoidal category of locally-applicable transformations. After modelling one-input supermaps
with slots, we use them to inductively define multi-input polyslots. As an application we show that
quantum superpositions of circuits-with-holes on arbitrary quantum systems, are indeed polyslots
on the category of unitaries between general (even non-seperable) Hilbert spaces.

In our first theorem we show how to compose polyslots to form a polycategory pslot[C] which
enriches the monoidal structure of C.

Theorem 1. The polyslots on C define a symmetric polycategory pslot[C].
We then turn to recovering superchannels and superunitaries. Concretely, letting U, QC be

the categories of unitaries and quantum channels, and letting uQS, QS be the symmetric polycat-
egories of superunitaries and superchannels respectively:

Theorem 2. pslot[U] is equivalent as a symmetric polycategory to uQS, and pslot[QC] is equiv-
alent as a symmetric polycategory to QS.

To summarise, the paper provides a construction pslot[C] for supermaps on a symmetric
monoidal category C, which has all of our proposed physical and compositional features, and
furthermore is broad enough to model quantum causal structures on arbitrary Hilbert spaces.
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