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We characterize a number of well known systems of approximate inference as loss models: lax
sections of 2-fibrations of statistical games, constructed by attaching internally-defined loss functions
to Bayesian lenses. Our examples include the relative entropy, which constitutes a strict section,
and whose chain rule is formalized by the horizontal composition of the 2-fibration. In order to
capture this compositional structure, we first introduce the notion of ‘copy-composition’, alongside
corresponding bicategories through which the composition of copy-discard categories factorizes.
These bicategories are a variant of the Copara construction, and so we additionally introduce
coparameterized Bayesian lenses, proving that coparameterized Bayesian updates compose optically,
as in the non-coparameterized case.

1 Introduction

In previous work [1], we introduced Bayesian lenses, observing that the Bayesian inversion of a composite
stochastic channel is (almost surely) equal to the ‘lens composite’ of the inversions of the factors; that
is, Bayesian updates compose optically (‘BUCO’) [2]. Formalizing this statement for a given category
C all of whose morphisms (‘channels’) admit Bayesian inversion, we can observe that there is (almost
surely) a functor p´q: : C Ñ BayesLenspC q from C to the category BayesLenspC q whose morphisms
pX ,Aq ÞÑ pY,Bq are Bayesian lenses: pairs pc,c1q of a channel XÑ‚ Y with a ‘state-dependent’ inverse
c1 : C pI,Xq Ñ C pB,Aq. Bayesian lenses constitute the morphisms of a fibration πLens : BayesLenspC q Ñ

C , since BayesLenspC q is obtained as the Grothendieck construction of (the pointwise opposite of) an
indexed category Stat : C op Ñ Cat of ‘state-dependent channels’ (recalled in Appendix A), and the
functor p´q: is in fact a section of πLens, taking c : XÑ‚ Y to the lens pc,c:q : pX ,Xq ÞÑ pY,Y q, where c:

is the almost-surely unique Bayesian inversion of c (so that the projection πLens can simply forget the
inversion, returning again the channel c).

The functor p´q: picks out a special class of Bayesian lenses, which we may call exact (as they
compute ‘exact’ inversions), but although the category BayesLenspC q has many other morphisms, the
construction is not extravagant: by comparison, we can think of the non-exact lenses as representing
approximate inference systems. This is particularly necessary in computational applications, because
computing exact inversions is usually intractable, but this creates a new problem: choosing an
approximation, and measuring its performance. In this paper, we formalize this process, by attaching loss
functions to Bayesian lenses, thus creating another fibration, of statistical games. Sections of this latter
fibration encode compositionally well-behaved systems of approximation that we call loss models.

A classic example of a loss model will be supplied by the relative entropy, which in some sense
measures the ‘divergence’ between distributions: the game here is then to minimize the divergence
between the approximate and exact inversions. If π and π 1 are two distributions on a space X , with
corresponding density functions pπ and pπ 1 (both with respect to a common measure), then their relative
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entropy Dpπ,π 1q is the real number given by Ex„π rlog pπpxq ´ log pπ 1pxqs1. Given a pair of channels
α,α 1 : AÑ‚ B (again commensurately associated with densities), we can extend D to a map Dα,α 1 : A Ñ R`

in the natural way, writing a ÞÑ D
`

αpaq,α 1paq
˘

. We can assign such a map Dα,α 1 to any such parallel pair
of channels, and so, following the logic of composition in C , we might hope for the following equation to
hold for all a : A and composable parallel pairs α,α 1 : AÑ‚ B and β ,β 1 : BÑ‚ C,:

Dβ‚α,β 1‚α 1paq “ E
b„αpaq

“

Dβ ,β 1pbq
‰

` Dα,α 1paq

The right-hand side is known as the chain rule for relative entropy, but, unfortunately, the equation
does not hold in general, because the composites β ‚ α and β 1 ‚ α 1 involve an extra expectation (by the
‘Chapman-Kolmogorov’ rule for channel composition). However, we can satisfy an equation of this form
by using ‘copy-composition’: if we write B to denote the canonical ‘copying’ comultiplication on B, and
define β ‚2 α :“ pidB bβ q ‚ B ‚ α , then Dβ‚2α,β 1‚2α 1paq does equal the chain-rule form on the right-hand
side. This result exhibits a general pattern about “copy-discard categories” [3] such as C : composition ‚

can be decomposed into first copying , and then discarding . If we don’t discard, then we retain the
‘intermediate’ variables, and this results in a functorial assignment of relative entropies to channels.

The rest of this paper is dedicated to making use of this observation to construct loss models,
including (but not restricted to) the relative entropy. The first complication that we encounter is that
copy-composition is not strictly unital, because composing with an identity retains an extra variable.
To deal with this, in §2, we construct a bicategory of copy-composite channels, extending the Copara
construction [4, §2], and build coparameterized (copy-composite) Bayesian lenses accordingly; we also
prove a corresponding BUCO result. In §3, we then construct 2-fibrations of statistical games, defining
loss functions internally to any copy-discard category C that admits “bilinear effects”. Because we are
dealing with approximate systems, the 2-dimensional structure of the construction is useful: loss models
are allowed to be lax sections. We then characterize the relative entropy, maximum likelihood estimation,
the free energy, and the ‘Laplacian’ free energy as such loss models.

Assuming C is symmetric monoidal, the constructions here result in monoidal (2-)fibrations, but due
to space constraints we defer the presentation of this structure (and its exemplification by the foregoing
loss models) to Appendix B. For the same reason, we defer comprehensive proofs to Appendix C.

Remark 1.1. Much of this work is situated amongst monoidal fibrations of bicategories, the full theory of
which is not known to the present author. Fortunately, enough structure is known for the present work
to have been possible, and where things become murkier—such as in the context of monoidal indexed
bicategories and their lax homomorphisms—the way largely seems clear. For this, we are grateful to
Baković [5], Johnson and Yau [6], and Moeller and Vasilakopoulou [7] in particular for lighting the way;
and we enthusiastically encourage the further elucidation of these structures by category theorists.

2 ‘Copy-composite’ Bayesian lenses

2.1 Copy-composition by coparameterization

In a locally small copy-discard category C , every object A is equipped with a canonical comonoid
structure p A, Aq, and so, by the comonoid laws, it is almost a triviality that the composition function

1For details about this ‘expectation’ notation E, see 3.11.
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‚ : C pB,Cq ˆC pA,Bq Ñ C pA,Cq factorizes as

C pB,Cq ˆC pA,Bq
pidB b´qˆC

´

idA, B

¯

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C pB b B,B bCq ˆC pA,B b Bq ¨ ¨ ¨

¨ ¨ ¨
‚
ÝÑ C pA,B bCq

C pidA,projCq
ÝÝÝÝÝÝÝÑ C pA,Cq

where the first factor copies the B output of the first morphism and tensors the second morphism with the
identity on B, the second factor composes the latter tensor with the copies, and the third discards the extra
copy of B2. This is, however, only almost trivial, since it witnesses the structure of ‘Chapman-Kolmogorov’
style composition in categories of stochastic channels such as K ℓpDq, the Kleisli category of the (finitary)
distributions monad D : Set Ñ Set. There, given channels c : AÑ‚ B and d : BÑ‚ C, the composite d ‚ c is
formed first by constructing the ‘joint’ channel d ‚2 c defined by pd ‚2 cqpb,c|aq :“ dpc|bqcpb|aq, and then
discarding (marginalizing over) b : B, giving

pd ‚ cqpc|aq “
ÿ

b:B

pd ‚2 cqpb,c|aq “
ÿ

b:B

dpc|bqcpb|aq .

Of course, the channel d ‚2 c is not a morphism AÑ‚ C, but rather AÑ‚ BbC; that is, it is coparameterized by
B. Moreover, as noted above, ‚2 is not strictly unital: we need a 2-cell that discards the coparameter, and
hence a bicategory, in order to recover (weak) unitality. We therefore construct a bicategory Copara2pC q

as a variant of the Copara construction [4, §2], in which a 1-cell A Ñ B may be any morphism AÑ‚ M b B
in C , and where horizontal composition is precisely copy-composition.

Theorem 2.1. Let pC ,b, Iq be a copy-discard category. Then there is a bicategory Copara2pC q as
follows. Its 0-cells are the objects of C . A 1-cell f : A ÝÑ

M
B is a morphism f : A Ñ M b B in C . A 2-cell

ϕ : f ñ f 1, with f : A ÝÑ
M

B and f 1 : A ÝÑ
M1

B, is a morphism ϕ : A b M b B Ñ M1 of C , satisfying the

change of coparameter axiom:

f 1A

B

M1

“ fA

B

M1
ϕ

The identity 2-cell id f : f ñ f on f : A ÝÑ
M

B is given by the projection morphism projM : A b M b B Ñ M

obtained by discarding A and B, as in footnote 2. The identity 1-cell idA on A is given by the inverse of
the left unitor of the monoidal structure on C , i.e. idA :“ λ

´1
A : A ÝÑ

I
A, with coparameter thus given by

the unit object I.
Given 2-cells ϕ : f ñ f 1 and ϕ 1 : f 1 ñ f 2, their vertical composite ϕ 1 d ϕ : f ñ f 2 is given by the

string diagram on the left below. Given 1-cells f : A ÝÑ
M

B then g : B ÝÑ
N

C, the horizontal composite

g ˝ f : A ÝÝÝÝÝÝÑ
pMbBqbN

C is given by the middle string diagram below. Given 2-cells ϕ : f ñ f 1 and γ : g ñ g1

between 1-cells f , f 1 : A ÝÑ
M

B and g,g1 : B ÝÑ
N

C, their horizontal composite γ ˝ ϕ : pg ˝ f q ñ pg1 ˝ f 1q is

2 We define projC :“ B bC BbidC
ÝÝÝÝÝÑ I bC λC

ÝÑ C, using the comonoid counit and the left unitor of C ’s monoidal structure.
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defined by the string diagram on the right below.

ϕ ϕ 1
fA g

C

N

M

B ϕ

γ

A

M

B

N

C

N1

B

M1

Remark 2.2. When C is symmetric monoidal, Copara2pC q inherits a monoidal structure, elaborated in
Proposition B.1.

Remark 2.3. In order to capture the bidirectionality of Bayesian inversion we will need to conside
left- and right-handed versions of the Copara2 construction. These are formally dual, and when C is
symmetric monoidal (as in most examples) they are isomorphic. Nonetheless, it makes formalization
easier if we explicitly distinguish Coparal

2pC q, in which the coparameter is placed on the left of the
codomain (as above), from Coparar

2pC q, in which it is placed on the right. Aside from the swapping of
this handedness, the rest of the construction is the same.

We end this section with three easy (and ambidextrous) propositions relating C and Copara2pC q.

Proposition 2.4. There is an identity-on-objects lax embedding ι : C ãÑ Copara2pC q, mapping f : X Ñ Y
to f : X ÝÑ

I
Y (using the unitor of the monoidal structure on C ). The laxator ιpgq˝ ιp f q Ñ ιpg˝ f q discards

the coparameter obtained from copy-composition.

Proposition 2.5. There is a ‘discarding’ functor p´q : Copara2pC q Ñ C , which takes any coparameter-
ized morphism and discards the coparameter.

Proposition 2.6. ι is a section of p´q . That is, idC “ C
ι

ãÝÑ Copara2pC q
p´q
ÝÝÝÑ C .

2.2 Coparameterized Bayesian lenses

In order to define (bi)categories of statistical games, coherently with loss functions like the relative
entropy that compose by copy-composition, we first need to define coparameterized (copy-composite)
Bayesian lenses. Analogously to non-coparameterized Bayesian lenses, these will be obtained by applying
a Grothendieck construction to an indexed bicategory [5, Def. 3.5] of state-dependent channels.

Definition 2.7. We define the indexed bicategory Stat2 : Coparal
2pC qcoop Ñ Bicat fibrewise as follows.

(i) The 0-cells Stat2pXq0 of each fibre Stat2pXq are the objects C0 of C .

(ii) For each pair of 0-cells A,B, the hom-category Stat2pXqpA,Bq is defined to be the functor category
Cat

`

discC pI,Xq,Coparar
2pC qpA,Bq

˘

, where disc denotes the functor taking a set to the associated
discrete category.

(iii) For each 0-cell A, the identity functor idA : 1 Ñ Stat2pXqpA,Aq is the constant functor on the identity

on A in Coparar
2pC q; i.e. discC pI,Xq

!
ÝÑ 1 idA

ÝÑ Coparar
2pC qpA,Aq.
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(iv) For each triple A,B,C of 0-cells, the horizontal composition functor ˝A,B,C is defined by

˝A,B,C : Stat2pXqpB,Cq ˆStat2pXqpA,Bq ¨ ¨ ¨

¨ ¨ ¨
“
ÝÑ Cat

`

discC pI,Xq,Coparar
2pC qpB,Cq

˘

ˆ Cat
`

discC pI,Xq,Coparar
2pC qpA,Bq

˘

¨ ¨ ¨

¨ ¨ ¨
ˆ
ÝÑ Cat

`

discC pI,Xq2,Coparar
2pC qpB,Cq ˆ Coparar

2pC qpA,Bq
˘

¨ ¨ ¨

¨ ¨ ¨
Cat

´

,˝
¯

ÝÝÝÝÝÝÑ Cat
`

discC pI,Xq,Coparar
2pC qpA,Cq

˘

¨ ¨ ¨

¨ ¨ ¨
“
ÝÑ Stat2pXqpA,Cq

where Catp ,˝q indicates pre-composition with the universal (Cartesian) copying functor in
pCat,ˆ,1q and post-composition with the horizontal composition functor of Coparar

2pC q.

For each pair of 0-cells X ,Y in CoparalpC q, we define the reindexing pseudofunctor Stat2,X ,Y :
CoparalpC qpX ,Y qop Ñ Bicat

`

Stat2pY q,Stat2pXq
˘

as follows.

(a) For each 1-cell f in CoparalpC qpX ,Y q, we obtain a pseudofunctor Stat2p f q : Stat2pY q Ñ Stat2pXq

which acts as the identity on 0-cells.

(b) For each pair of 0-cells A,B in Stat2pY q, the functor Stat2p f qA,B is defined as the precom-
position functor Cat

`

discC pI, f q,Coparar
2pC qpA,Bq

˘

, where p´q is the discarding functor
Coparal

2pC q Ñ C of Proposition 2.5.

(c) For each 2-cell ϕ : f ñ f 1 in Coparal
2pC qpX ,Y q, the pseudonatural transformation Stat2pϕq :

Stat2p f 1q ñ Stat2p f q is defined on 0-cells A : Stat2pY q by the discrete natural transformation with
components Stat2pϕqA :“ idA, and on 1-cells c : Stat2pY qpA,Bq by the substitution natural transfor-
mation with constitutent 2-cells Stat2pϕqc : Stat2p f qpcq ñ Stat2p f 1qpcq in Stat2pXq which acts by
replacing Cat

`

discC pI, f q,Coparar
2pC qpA,Bq

˘

by Cat
`

discC pI, f 1 q,Coparar
2pC qpA,Bq

˘

; and
which we might alternatively denote by Cat

`

discC pI,ϕ q,Coparar
2pC qpA,Bq

˘

.

Notation 2.8. We will write f : A X
ÝÑ
M
‚ B to denote a state-dependent coparameterized channel f with

coparameter M and state-dependence on X .

In 1-category theory, lenses are morphisms in the fibrewise opposite of a fibration [8]. Analogously,
our bicategorical Bayesian lenses are obtained as 1-cells in the bicategorical Grothendieck construction
[5, §6] of (the pointwise opposite of) the indexed bicategory Stat2.

Definition 2.9. Fix a copy-discard category pC ,b, Iq. We define the bicategory of coparameterized
Bayesian lenses in C , denoted BayesLens2pC q or simply BayesLens2, to be the bicategorical
Grothendieck construction of the pointwise opposite of the corresponding indexed bicategory Stat2,
with the following data:

(i) A 0-cell in BayesLens2 is a pair pX ,Aq of an object X in Coparal
2pC q and an object A in Stat2pXq;

equivalently, a 0-cell in BayesLens2 is a pair of objects in C .

(ii) The hom-category BayesLens2
`

pX ,Aq,pY,Bq
˘

is the product category Coparal
2pC qpX ,Y q ˆ

Stat2pXqpB,Aq.

(iii) The identity on pX ,Aq is given by the pair pidX , idAq.



6 Statistical Games

(iv) For each triple of 0-cells pX ,Aq,pY,Bq,pZ,Cq, the horizontal composition functor is given by

BayesLens2
`

pY,Bq,pZ,Cq
˘

ˆ BayesLens2
`

pX ,Aq,pY,Bq
˘

“ Coparal
2pC qpY,Zq ˆStat2pY qpC,Bq ˆ Coparal

2pC qpX ,Y q ˆStat2pXqpB,Aq

„
ÝÑ

ÿ

g:Coparal
2pC qpY,Zq

ÿ

f :Coparal
2pC qpX ,Y q

Stat2pY qpC,Bq ˆStat2pXqpB,Aq

ř

g
ř

f Stat2p f qC,Bˆid
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÿ

g:Coparal
2pC qpY,Zq

ÿ

f :Coparal
2pC qpX ,Y q

Stat2pXqpC,Bq ˆStat2pXqpB,Aq

ř

˝
Coparal

2pC q
˝Stat2pXq

ÝÝÝÝÝÝÝÝÝÝÝÝÑ
ÿ

g˝ f :Coparal
2pC qpX ,Zq

Stat2pXqpC,Aq

„
ÝÑ BayesLens2

`

pX ,Aq,pZ,Cq
˘

where the functor in the penultimate line amounts to the product of the horizontal composition
functors on Coparal

2pC q and Stat2pXq.

Remark 2.10. When C is symmetric monoidal, Stat2 acquires the structure of a monoidal indexed
bicategory (Definition B.2 and Theorem B.3), and hence BayesLens2 becomes a monoidal bicategory
(Corollary B.4).

2.3 Coparameterized Bayesian updates compose optically

So that our generalized Bayesian lenses are worthy of the name, we should also confirm that Bayesian
inversions compose according to the lens pattern (‘optically’) also in the coparameterized setting. Such
confirmation is the subject of the present section, and so we first introduce a new “coparameterized Bayes’
rule”.

Definition 2.11. We say that a coparameterized channel γ : AÑ‚ M b B admits Bayesian inversion if there
exists a dually coparameterized channel ρπ : BÑ‚ A b M satisfying the graphical equation (with string
diagrams read from bottom to top)

γ

π

A M B

“ ρπ

γ

π

A M B

.

In this case, we say that ρπ is the Bayesian inversion of γ with respect to π .

With this definition, we can supply the desired result that “coparameterized Bayesian updates compose
optically”.

Theorem 2.12. Suppose pγ,γ:q : pA,AqÝÑ
M
| pB,Bq and pδ ,δ :q : pB,BqÝÑ

N
| pC,Cq are coparameterized

Bayesian lenses in BayesLens2. Suppose also that π : IÑ‚ A is a state on A in the underlying category of
channels C , such that γ

:
π is a Bayesian inversion of γ with respect to π , and such that δ

:
γπ is a Bayesian
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inversion of δ with respect to pγπq ; where the notation p´q represents discarding coparameters. Then
γ

:
π ‚ δ

:
γπ is a Bayesian inversion of δ ‚ γ with respect to π . (Here ‚ denotes copy-composition.) Moreover,

if pδ ‚γq
:
π is any Bayesian inversion of δ ‚γ with respect to π , then γ

:
π ‚δ

:
γπ is pδγπq -almost-surely equal

to pδ ‚ γq
:
π : that is, pδ ‚ γq

:
π

pδγπq
„ γ

:
π ‚ δ

:
γπ .

In order to satisfy this coparameterized Bayes’ rule, a Bayesian lens must be of ‘simple’ type.

Definition 2.13. We say that a coparameterized Bayesian lens pc,c1q is simple if its domain and codomain
are ‘diagonal’ (duplicate pairs of objects) and if the coparameter of c is equal to the coparameter of c1. In
this case, we can write the type of pc,c1q as pX ,XqÝÑ

M
| pY,Y q or simply XÝÑ

M
| Y .

3 Statistical games for local approximate inference

3.1 Losses for lenses

Statistical games are obtained by attaching to Bayesian lenses loss functions, representing ‘local’
quantifications of the performance of approximate inference systems. Because this performance depends
on the system’s context (i.e., the prior π : IÑ‚ X and the observed data b : B), a loss function at its most
concrete will be a function C pI,Xq ˆ B Ñ R`. To internalize this type in C , we may recall that, when C
is the category sfKrn of s-finite kernels or the Kleisli category K ℓpDď1q of the subdistribution monad, a
density function pc : X ˆY Ñ r0,1s for a channel c : XÑ‚ Y corresponds to an effect (or costate) X bY Ñ‚ I.
In this way, we can see a loss function as a kind of state-dependent effect B X

ÝÑ‚ I.
Loss functions will compose by sum, and so we need to ask for the effects in C to form a monoid.

Moreover, we need this monoid to be ‘bilinear’ with respect to channels, so that Stat-reindexing (cf.
Definition A.1) preserves sums. These conditions are formalized in the following definition.

Definition 3.1. Suppose pC ,b, Iq is a copy-discard category. We say that C has bilinear effects if the
following conditions are satisfied:

(i) effect monoid: there is a natural transformation ` : C p´, Iq ˆ C p“, Iq ñ C p´ b “, Iq making
ř

A:C C pA, Iq into a commutative monoid with unit 0 : IÑ‚ I;

(ii) bilinearity: pg ` g1q ‚ ‚ f “ g ‚ f ` g1 ‚ f for all effects g,g1 and morphisms f such that pg ` g1q ‚

‚ f exists.

A trivial example of a category with bilinear effects is supplied by any Cartesian category, such as
Set. If M is any monoid in Set, then a less trivial example is supplied by the Kleisli category of the
corresponding free module monad; bilinearity follows from the module structure. A related non-example
is K ℓpDď1q: the failure here is that the effects only form a partial monoid3. More generally, the category
sfKrn of s-finite kernels [10] has bilinear effects (owing to the linearity of integration), and we will
assume this as our ambient C for the examples below.

Given such a category C with bilinear effects, we can lift the natural transformation `, and hence the

3Indeed, an effect algebra is a kind of partial monoid [9, §2], but we do not need the extra complication here.
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bilinear effect structure, to the fibres of StatC , using the universal property of the product of categories:

`X : StatpXqp´, Iq ˆStatpXqp“, Iq ùù Set
`

C pI,Xq,C p´, Iq
˘

ˆ Set
`

C pI,Xq,C p“, Iq
˘

p¨,¨q
ùùñ Set

`

C pI,Xq,C p´, Iq ˆC p“, Iq
˘

Set
`

C pI,Xq,`
˘

ùùùùùùùùùñ Set
`

C pI,Xq,C p´ b “, Iq
˘

“
ùñ StatpXqp´ b “, Iq

Here, p¨, ¨q denotes the pairing operation obtained from the universal property. In this way, each StatpXq

has bilinear effects. Note that this lifting is (strictly) compatible with the reindexing of Stat, so that `p´q

defines an indexed natural transformation. This means in particular that reindexing distributes over sums:
given state-dependent effects g,g1 : B Y

ÝÑ‚ I and a channel c : XÑ‚ Y , we have pg `Y g1qc “ gc `X g1
c. We will

thus generally omit the subscript from the lifted sum operation, and just write `.
We are now ready to construct the bicategory of statistical games.

Definition 3.2. Suppose pC ,b, Iq has bilinear effects, and let BayesLens2 denote the corresponding
bicategory of (copy-composite) Bayesian lenses. We will write SGameC to denote the following
bicategory of (copy-composite) statistical games in C :

• The 0-cells are the 0-cells pX ,Aq of BayesLens2;

• the 1-cells, called statistical games, pX ,Aq Ñ pY,Bq are pairs pc,Lcq of a 1-cell c : pX ,Aq ÞÑ pY,Bq

in BayesLens2 and a loss Lc : B X
ÝÑ‚ I in StatpXqpB, Iq;

• given 1-cells pc,Lcq,pc1,Lc1

q : pX ,Aq Ñ pY,Bq, the 2-cells pc,Lcq ñ pc1,Lc1

q are pairs pα,Kαq of a
2-cell α : c ñ c1 in BayesLens2 and a loss Kα : B X

ÝÑ‚ I such that Lc “ Lc1

` Kα ;

• the identity 2-cell on pc,Lcq is pidc,0q;

• given 2-cells pα,Kαq : pc,Lcq ñ pc1,Lc1

q and pα 1,Kα 1

q : pc1,Lc1

q ñ pc2,Lc2

q, their vertical
composite is pα 1 ˝ α,Kα 1

` Kαq, where ˝ here denotes vertical composition in BayesLens2;

• given 1-cells pc,Lcq : pX ,Aq Ñ pY,Bq and pd,Ldq : pY,Bq Ñ pZ,Cq, their horizontal composite is
pc ˝| d,Ld

c ` Lc ˝ dcq; and
– given 2-cells pα,Kαq : pc,Lcq ñ pc1,Lc1

q and pβ ,Kβ q : pd,Ldq ñ pd1,Ld1

q, their horizontal
composite is pβ ˝| α,Kβ

c ` Kα ˝ dcq, where ˝| here denotes horizontal composition in
BayesLens2.

Theorem 3.3. Definition 3.2 generates a well-defined bicategory.
The proof of this result (given in §C.3) is that SGameC is obtained via a pair of bicategorical

Grothendieck constructions [5]: first to obtain Bayesian lenses; and then to attach the loss functions. The
proof depends on the intermediate result that our effect monoids can be ‘upgraded’ to monoidal categories;
we then use the delooping of this structure to associate (state-dependent) losses to (state-dependent)
channels, after discarding the coparameters of the latter.
Lemma 3.4. Suppose pC ,b, Iq has bilinear effects. Then, for each object B, C pB, Iq has the structure of a
symmetric monoidal category. The objects of C pB, Iq are its elements, the effects. If g,g1 are two effects,
then a morphism κ : g Ñ g1 is an effect such that g “ g1 ` κ; the identity morphism for each effect idg is
then the constant 0 effect. Likewise, the tensor of two effects is their sum, and the corresponding unit
is the constant 0. Precomposition by any morphism c : AÑ‚ B preserves the monoidal category structure,
making the presheaf C p´, Iq into a fibrewise-monoidal indexed category C op Ñ MonCat.
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As already indicated, this structure lifts to the fibres of Stat.
Corollary 3.5. For each object X in a category with bilinear effects, and for each object B,
StatpXqpB, Iq inherits the symmetric monoidal structure of C pB, Iq; note that morphisms of state-
dependent effects are likewise state-dependent, and that tensoring (summing) state-dependent effects
involves copying the parameterizing state. Moreover, Statp´qp“, Iq is a fibrewise-monoidal indexed
category

ř

X :C op StatpXqop Ñ MonCat.

3.2 Local inference models

In the context of approximate inference, one often does not have a single statistical model to evaluate, but
a whole family of them. In particularly nice situations, this family is actually a subcategory D of C , with
the family of statistical models being all those that can be composed in D . The problem of approximate
inference can then be formalized as follows. Since both BayesLens2 and SGameC were obtained by
bicategorical Grothendieck constructions, we have a pair of 2-fibrations SGameC

πLoss
ÝÝÑ BayesLens2

πLens
ÝÝÝÑ

Coparal
2pC q. Each of πLoss, πLens, and the discarding functor p´q can be restricted to the subcategory D .

The inclusion D ãÑ Coparal
2pDq is a section of this restriction of p´q ; the assignment of inversions to

channels in D then corresponds to a 2-section of the 2-fibration πLens (restricted to D); and the subsequent
assignment of losses is a further 2-section of πLoss. This situation is depicted in the following diagram of
bicategories:

SGameD SGameC

BayesLens2|D BayesLens2

Coparal
2pDq Coparal

2pC q

D C

πLoss

πLens

πLoss|D

πLens|D

|D

This motivates the following definitions of inference system and loss model, although, for the sake of our
examples, we will explicitly allow the loss-assignment to be lax. Before giving these new definitions, we
recall the notion of essential image of a functor.
Definition 3.6 ([11]). Suppose F : C Ñ D is an n-functor (a possibly weak homomorphism of weak
n-categories). The image of F is the smallest sub-n-category of D that contains Fpαq for all k-cells α in
C , along with any pk ` 1q-cells relating images of composites and composites of images, for all 0 ď k ď n.
We say that a sub-n-category D is replete if, for any k-cells α in D and β in C (with 0 ď k ă n) such that
f : α ñ β is a pk ` 1q-isomorphism in C , then f is also a pk ` 1q-isomorphism in D . The essential image
of F , denoted impFq, is then the smallest replete sub-n-category of D containing the image of F .
Definition 3.7. Suppose pC ,b, Iq is a copy-delete category. An inference system in C is a pair pD , ℓq
of a subcategory D ãÑ C along with a section ℓ : impιq Ñ BayesLens2|D of πLens|D , where impιq is the
essential image of the canonical lax inclusion ι : D ãÑ Coparal

2pDq.
Definition 3.8. Suppose pC ,b, Iq has bilinear effects and B is a subbicategory of BayesLens2. A loss
model for B is a lax section L of the restriction πLoss|B of πLoss to B. We say that L is a strict loss model
if it is in fact a strict 2-functor, and a strong loss model if it is in fact a pseudofunctor.
Remark 3.9. We may often be interested in loss models for which B is in fact the essential image of an
inference system, but we do not stipulate this requirement in the definition as it is not necessary for the
following development.
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Since lax functors themselves collect into categories, and using the monoidality of `, we have the
following easy proposition that will prove useful below.

Proposition 3.10. Loss models for B constitute the objects of a symmetric monoidal category
`

LosspBq,`,0
˘

. The morphisms of LosspBq are icons (identity component oplax transformations
[6, §4.6]) between the corresponding lax functors, and they compose accordingly. The monoidal structure
is given by sums of losses.

3.3 Examples

Each of our examples involves taking expectations of log-densities, and so to make sense of them it first
helps to understand what we mean by “taking expectations”.

Notation 3.11 (Expectations). Written as a function, a density p on X has the type X Ñ R`; written as an
effect, the type is XÑ‚ I. Given a measure or distribution π on X (equivalently, a state π : IÑ‚ X), we can
compute the expectation of p under π as the composite p ‚ π . We write the resulting quantity as Eπ rps, or
more explicitly as Ex„π

“

ppxq
‰

. We can think of this expectation as representing the ‘validity’ (or truth
value) of the ‘predicate’ p given the state π [12].

3.3.1 Relative entropy and Bayesian inference

For our first example, we return to the subject with which we opened this paper: the compositional
structure of the relative entropy. We begin by giving a precise definition.

Definition 3.12. Suppose α,β are both measures on X , with α absolutely continuous with respect to
β . Then the relative entropy or Kullback-Leibler divergence from α to β is the quantity DKLpα,β q :“
Eα

”

log α

β

ı

, where α

β
is the Radon-Nikodym derivative of α with respect to β .

Remark 3.13. When α and β admit density functions pα and pβ with respect to the same base measure
dx, then DKLpα,β q can equally be computed as Ex„α

“

log pαpxq ´ log pβ pxq
‰

. It it this form that we will
adopt henceforth.

Proposition 3.14. Let B be a subbicategory of simple lenses in BayesLens2, all of whose channels
admit density functions with respect to a common measure and whose forward channels admit Bayesian
inversion (and whose forward and backward coparameters coincide), and with only structural 2-cells. Then
the relative entropy defines a strict loss model KL : B Ñ SGame. Given a lens pc,c1q : pX ,Xq ÞÑ pY,Y q,
KL assigns the loss function KLpc,c1q : Y X

ÝÑ‚ I defined, for π : IÑ‚ X and y : Y , by the relative entropy
KLpc,c1qπpyq :“ DKL

`

c1
πpyq,c:

πpyq
˘

, where c: is the exact inversion of c.

Successfully playing a relative entropy game entails minimizing the divergence from the approximate
to the exact posterior. This divergence is minimized when the two coincide, and so KL represents a form
of approximate Bayesian inference.

3.3.2 Maximum likelihood estimation

A statistical system may be more interested in predicting observations than updating beliefs. This is
captured by the process of maximum likelihood estimation.

Definition 3.15. Let pc,c1q : pX ,Xq ÞÑ pY,Y q be a simple lens whose forward channel c admits a density
function pc. Then its log-likelihood is the loss function defined by MLEpc,c1qπpyq :“ ´ log pc ‚πpyq.
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Proposition 3.16. Let B be a subbicategory of lenses in BayesLens2 all of which admit density functions
with respect to a common measure, and with only structural 2-cells. Then the assignment pc,c1q ÞÑ

MLEpc,c1q defines a lax loss model MLE : B Ñ SGame.

Successfully playing a maximum likelihood game involves maximizing the log-likelihood that the
system assigns to its observations y : Y . This process amounts to choosing a channel c that assigns high
likelihood to likely observations, and thus encodes a valid model of the data distribution.

3.3.3 Autoencoders via the free energy

Many adaptive systems neither just infer nor just predict: they do both, building a model of their
observations that they also invert to update their beliefs. In machine learning, such systems are known
as autoencoders, as they ‘encode’ (infer) and ‘decode’ (predict), ‘autoassociatively’ [13]. In a Bayesian
context, they are known as variational autoencoders [14], and their loss function is the free energy [15].

Definition 3.17. The free energy loss model is the sum of the relative entropy and the likelihood loss
models: FE :“ KL`MLE. Given a simple lens pc,c1q : pX ,Xq ÞÑ pY,Y q admitting Bayesian inversion and
with densities, FE assigns the loss function

FEpc,c1qπpyq “ pKL`MLEqpc,c1qπpyq

“ DKL
`

c1
πpyq,c:

πpyq
˘

´ log pc ‚πpyq

Remark 3.18. Beyond its autoencoding impetus, another important property of the free energy is its
improved computational tractability compared to either the relative entropy or the likelihood loss. This
property is a consequence of the following fact: although obtained as the sum of terms which both depend
on an expensive marginalization4, the free energy itself does not. This can be seen by expanding the
definitions of the relative entropy and of c:

π and rearranging terms:

FEpc,c1qπpyq “ DKL
`

c1
πpyq,c:

πpyq
˘

´ log pc ‚πpyq

“ E
px,mq„c1

π pyq

“

log pc1
π
px,m|yq ´ log pc:

π

px,m|yq
‰

´ log pc ‚πpyq

“ E
px,mq„c1

π pyq

“

log pc1
π
px,m|yq ´ log pc:

π

px,m|yq ´ log pc ‚πpyq
‰

“ E
px,mq„c1

π pyq

“

log pc1
π
px,m|yq ´ log

pcpm,y|xqpπpxq

pc ‚πpyq
´ log pc ‚πpyq

‰

“ E
px,mq„c1

π pyq

“

log pc1
π
px,m|yq ´ log pcpm,y|xq ´ log pπpxq

‰

“ DKL
`

c1
πpyq,π b 1

˘

´ E
px,mq„c1

π pyq

“

log pcpm,y|xq
‰

Here, 1 denotes the measure with density 1 everywhere. Note that when the coparameter is trivial,
FEpc,c1qπpyq reduces to

DKL
`

c1
πpyq,π

˘

´ E
x„c1

π pyq

“

log pcpy|xq
‰

.

Remark 3.19. The name free energy is due to an analogy with the Helmholtz free energy in
thermodynamics, as we can write it as the difference between an (expected) energy and an entropy

4Evaluating the pushforward c ‚ π involves marginalizing over the intermediate variable; and evaluating c:
π pyq also involves

evaluating c ‚ π .
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term:

FEpc,c1qπpyq “ E
px,mq„c1

π pyq

“

´ log pcpm,y|xq ´ log pπpxq
‰

´ SXbM
“

c1
πpyq

‰

“ E
px,mq„c1

π pyq

“

Epc,πqpx,m,yq
‰

´ SXbM
“

c1
πpyq

‰

“ U ´ T S

where we call Epc,πq : X b M bY X
ÝÑ‚ I the energy, and where SXbM : I XbM

ÝÝÝÑ‚ I is the Shannon entropy. The
last equality makes the thermodynamic analogy: U here is the internal energy of the system; T “ 1 is the
temperature; and S is again the entropy.

3.3.4 The Laplace approximation

Although optimizing the free energy does not necessitate access to exact inversions, it is still necessary to
compute an expectation under the approximate inversion, and unless one chooses wisely5, this might also
be difficult. One such wise choice established in the computational neuroscience literature is the Laplace
approximation [17], in which one assumes Gaussian channels and posteriors with small variance. Under
these conditions, the expectations can be approximated away.

Definition 3.20. We will say that a channel c is Gaussian if cpxq is a Gaussian measure for every x in its
domain. We will denote the mean and variance of cpxq by µcpxq and Σcpxq respectively.

Proposition 3.21 (Laplace approximation). Let the ambient category of channels C be restricted to
that generated by Gaussian channels between finite-dimensional Cartesian spaces, and let B denote the
corresponding restriction of BayesLens2. Suppose pγ,ρq : pX ,Xq ÞÑ pY,Y q is such a lens, for which,
for all y : Y and Gaussian priors π : IÑ‚ X , the eigenvalues of Σρπ

pyq are small. Then the free energy
FEpγ,ρqπpyq can be approximated by the Laplacian free energy

FEpγ,ρqπpyq « LFEpγ,ρqπpyq (1)

:“ Epγ,πq

`

µρπ
pyq,y

˘

´ SXbM
“

ρπpyq
‰

(2)

“ ´ log pγpµρπ
pyq,yq ´ log pπpµρπ

pyq|X q ´ SXbM
“

ρπpyq
‰

where we have written the argument of the density pγ in ‘function’ style; where p´qX denotes the
projection onto X ; and where SXbMrρπpyqs “ Epx,mq„ρπ pyqr´ log pρπ

px,m|yqs is the Shannon entropy of
ρπpyq. The approximation is valid when Σρπ

satisfies

Σρπ
pyq “

´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘´1
. (3)

We call Epγ,πq the Laplacian energy.

Remark 3.22. The usual form of the Laplace model in the literature omits the coparameters. It is of
course easy to recover the non-coparameterized form by taking M “ 1.

Proposition 3.23. Let B be a subbicategory of BayesLens2 of Gaussian lenses whose backward channels
have small variance. Then LFE defines a lax loss model B Ñ SGame.

Effectively, this proposition says that, under the stated conditions, the free energy and the Laplacian
free energy coincide. Consequently, successfully playing a Laplacian free energy game has the same
autoencoding effect.

5In machine learning, optimizing variational autoencoders using stochastic gradient descent typically involves a
“reparameterization trick” [16, §2.5].



T. St Clere Smithe 13

4 Future work

This paper only scratches the surface of the structure of statistical games. One avenue for further
investigation is the link between this structure and the similar structure of diegetic open (economic) games
[18], a recent reformulation of compositional game theory [19]. Notably, the composition rule for loss
functions appears closely related to the Bellman equation, suggesting that algorithms for approximate
inference (such as expectation-maximization) and reinforcement learning (such as backward induction)
are more than superficially similar.

Another avenue for further investigation concerns mathematical neatness. First, we seek an abstract
characterization of copy-composition and Copara2; it has been suggested to us6 that the computation by
compilers of “static single-assignment form” [20] by compilers may have a similar structure. Second, the
explicit constraint defining simple coparameterized Bayesian lenses is inelegant; we expect that using
dependent optics [21, 22, 23] may help to encode this constraint in the type signature, at the cost of
higher-powered mathematical machinery. Finally, we seek further examples of loss models, and more
abstract (and hopefully universal) characterizations of those we already have; for example, it is known
that the Shannon entropy has a topological origin [24] via a “nonlinear derivation” [25], and we expect
that we can follow this connection further.
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Cat as follows.

Stat : C op Ñ Cat

X ÞÑ StatpXq :“

¨

˚

˚

˝

StatpXq0 :“ C0
StatpXqpA,Bq :“ Set

`

C pI,Xq,C pA,Bq
˘

idA : StatpXqpA,Aq :“
"

idA : C pI,Xq Ñ C pA,Aq

ρ ÞÑ idA

˛

‹

‹

‚

(4)

f : C pY,Xq ÞÑ

¨

˚

˚

˚

˚

˝

Statp f q : StatpXq Ñ StatpY q

StatpXq0 “ StatpY q0

SetpC pI,Xq,C pA,Bqq Ñ Set
`

C pI,Y q,C pA,Bq
˘

α ÞÑ f ˚α :
`

σ : C pI,Y q
˘

ÞÑ
`

αp f ‚ σq : C pA,Bq
˘

˛

‹

‹

‹

‹

‚

Composition in each fibre StatpXq is as in C . Explicitly, indicating morphisms C pI,Xq Ñ C pA,Bq in
StatpXq by A X

ÝÑ‚ B, and given α : A X
ÝÑ‚ B and β : B X

ÝÑ‚ C, their composite is β ˝α : A X
ÝÑ‚ C :“ ρ ÞÑ β pρq‚αpρq,

where here we indicate composition in C by ‚ and composition in the fibres StatpXq by ˝. Given f : Y Ñ‚ X
in C , the induced functor Statp f q : StatpXq Ñ StatpY q acts by pre-composition.

The category of non-coparameterized Bayesian lenses is then obtained as the (1-categorical)
Grothendieck construction of the pointwise opposite of Stat, following Spivak [8].

B Monoidal statistical games

In this section, we exhibit the monoidal structures on copy-composite Bayesian lenses, statistical games,
and loss models, as well as demonstrating that each of our loss models is accordingly monoidal. We begin
by expressing the monoidal structure on Copara2pC q.
Proposition B.1. If the monoidal structure on C is symmetric, then Copara2pC q inherits a monoidal
structure pb, Iq, with the same unit object I as in C . On 1-cells f : A ÝÑ

M
B and f 1 : A1 ÝÑ

M1
B1, the tensor

f b f 1 : A b A1 ÝÝÝÝÑ
MbM1

B b B1 is defined by

f
A

f 1

A1

M

M1

B

B1

.

On 2-cells ϕ : f ñ g and ϕ 1 : f 1 ñ g1, the tensor ϕ bϕ 1 : p f b f 1q ñ pgbg1q is given by the string diagram

ϕ

ϕ 1

A

A1

M

M1

B

B1

N1

N

.
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Next, we define the notion of monoidal indexed bicategory.

Definition B.2. Suppose pB,b, Iq is a monoidal bicategory. We will say that F : B coop Ñ Bicat is
a monoidal indexed bicategory when it is equipped with the structure of a weak monoid object in the
3-category of indexed bicategories, indexed pseudofunctors, indexed pseudonatural transformations, and
indexed modifications.

More explicitly, we will take F to be a monoidal indexed bicategory when it is equipped with

(i) an indexed pseudofunctor µ : Fp´q ˆ Fp“q Ñ Fp´b “q called the multiplication, i.e.,
(a) a family of pseudofunctors µX ,Y : FX ˆ FY Ñ FpX bY q, along with
(b) for any 1-cells f : X Ñ X 1 and g : Y Ñ Y 1 in B, a pseudonatural isomorphism µ f ,g : µX 1,Y 1 ˝

pF f ˆ Fgq ñ Fp f b gq ˝ µX ,Y ;

(ii) a pseudofunctor η : 1 Ñ FI called the unit;

as well as three indexed pseudonatural isomorphisms — an associator, a left unitor, and a right unitor —
which satisfy weak analogues of the coherence conditions for a monoidal indexed category [7, §3.2], up
to invertible indexed modifications.

Using this notion, we can establish that Stat2 is monoidal. (So as to demonstrate the structure, we do
not defer the proof sketch.)

Theorem B.3. Stat2 is a monoidal indexed bicategory.

Proof sketch. The multiplication µ is given first by the family of pseudofunctors µX ,Y : Stat2pXq ˆ

Stat2pY q Ñ Stat2pX bY q which are defined on objects simply by tensor

µX ,Y pA,Bq “ A b B

since the objects do not vary between the fibres of Stat2, and on hom categories by the functors

Stat2pXqpA,Bq ˆStat2pY qpA1,B1q

“ Cat
`

discC pI,Xq,Coparar
2pC qpA,Bq

˘

ˆ Cat
`

discC pI,Y q,Coparar
2pC qpA1,B1q

˘

– Cat
`

discC pI,Xq ˆdiscC pI,Y q,Coparar
2pC qpA,Bq ˆ Coparar

2pC qpA1,B1q
˘

CatpdiscC pI,projX qˆdiscC pI,projY q,bq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Cat

`

discC pI,X bY q2,Coparar
2pC qpA b A1,B b B1q

˘

Catp ,idq
ÝÝÝÝÝÝÑ CatpdiscC pI,X bY q,Coparar

2pCqpA b A1,B b B1q

“ Stat2pX bY qpA b A1,B b B1q .

where Catp , idq indicates pre-composition with the universal (Cartesian) copying functor. For all
f : X Ñ X 1 and g : Y Ñ Y 1 in Coparal

2pC q, the pseudonatural isomorphisms

µ f ,g : µX 1,Y 1 ˝
`

Stat2p f q ˆStat2pgq
˘

ñ Stat2p f b gq ˝ µX ,Y

are obtained from the universal property of the product ˆ of categories. The unit η : 1 Ñ Stat2pIq is the
pseudofunctor mapping the unique object of 1 to the monoidal unit I. Associativity and unitality of this
monoidal structure follow from the functoriality of the construction, given the monoidal structures on C
and Cat.

Just as the monoidal Grothendieck construction induces a monoidal structure on categories of lenses
for monoidal pseudofunctors [7], we obtain a monoidal structure on the bicategory of copy-composite
bayesian lenses.
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Corollary B.4. The bicategory of copy-composite Bayesian lenses BayesLens2 is a monoidal bicategory.
The monoidal unit is the object pI, Iq. The tensor b is given on 0-cells by pX ,AqbpX 1,A1q :“ pX bX 1,Ab

A1q, and on hom-categories by

BayesLens2
`

pX ,Aq,pY,Bq
˘

ˆ BayesLens2
`

pX ,Aq,pY,Bq
˘

“ Coparal
2pC qpX ,Y q ˆStat2pXqpB,Aq ˆ Coparal

2pC qpX 1,Y 1q ˆStat2pX 1qpB1,A1q

„
ÝÑ Coparal

2pC qpX ,Y q ˆ Coparal
2pC qpX 1,Y 1q ˆStat2pXqpB,Aq ˆStat2pX 1qpB1,A1q

bˆ µ
op
X ,X1

ÝÝÝÝÝÑ Coparal
2pC qpX b X 1,Y bY 1q ˆStat2pX b X 1qpB b B1,A b A1q

“ BayesLens2
`

pX ,Aq b pX 1,A1q,pY,Bq b pY 1,B1q
˘

.

And similarly, we obtain a monoidal structure on statistical games.

Proposition B.5. The bicategory of copy-composite statistical games SGame is a monoidal bicategory.
The monoidal unit is the object pI, Iq. The tensor b is given on 0-cells as for the tensor of Bayesian lenses,
and on hom-categories by

SGame
`

pX ,Aq,pY,Bq
˘

ˆ SGame
`

pX 1,A1q,pY 1,B1q
˘

“ BayesLens2
`

pX ,Aq,pY,Bq
˘

ˆStatpXqpB, Iq

ˆ BayesLens2
`

pX 1,A1q,pY 1,B1q
˘

ˆStatpX 1qpB1, Iq

„
ÝÑ BayesLens2

`

pX ,Aq,pY,Bq
˘

ˆ BayesLens2
`

pX 1,A1q,pY 1,B1q
˘

ˆStatpXqpB, Iq ˆStatpX 1qpB1, Iq

bˆ µX ,X1

ÝÝÝÝÝÑ BayesLens2
`

pX ,Aq b pX 1,A1q,pY,Bq b pY 1,B1q
˘

ˆStatpX b X 1qpB b B1, I b Iq

„
ÝÑ SGame

`

pX ,Aq b pX 1,A1q,pY,Bq b pY 1,B1q
˘

where here µ indicates the multiplication of the monoidal structure on Stat [26, Prop. 4.3.5].

We give natural definitions of monoidal inference system and monoidal loss model, which we elaborate
below.

Definition B.6. A (lax) monoidal inference system is an inference system pD , ℓq for which ℓ is a lax
monoidal pseudofunctor. A (lax) monoidal loss model is a loss model L which is a lax monoidal lax
functor.

Remark B.7. We say ‘lax’ whenever a morphism (of any structure) only weakly preserves a monoidal
operation such as composition of any order; this includes as a special case lax monoidal functors (since a
monoidal category is a one-object bicategory). In this respect, we differ from [7, §2.2], who use ‘weak’ in
the latter case; we prefer to maintain consistency. Following [6, Def. 4.2.1], we will continue to say lax
when the witness to laxness maps composites of images to images of composites (and oplax when the
witness maps images of composites to composites of images).

These conventions mean that a loss model L : B Ñ SGame is lax monoidal when it is equipped with
strong transformations

B ˆB SGame ˆ SGame

B SGame

bB bG

LˆL

L

λ and
1

B SGame

pI,Iq

pI,Iq

L

λ0
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where bB and bG denote the monoidal products on B ãÑ BayesLens2 and SGame respectively, and
when λ and λ0 are themselves equipped with invertible modifications satisfying coherence axioms, as in
Moeller and Vasilakopoulou [7, §2.2].

Note that, because L must be a (lax) section of the 2-fibration πLoss|B : SGame|B Ñ B, the unitor
λ0 is forced to be trivial, picking out the identity on the monoidal unit pI, Iq. Likewise, the laxator
λ : Lp´q b Lp“q ñ Lp´ b “q must have 1-cell components which are identities:

LpX ,Aq b LpX 1,Aq “ pX ,Aq b pX 1,A1q “ pX b X 1,A b A1q “ L
`

pX ,Aq b LpX 1,Aq
˘

The interesting structure is therefore entirely in the 2-cells. We follow the convention of [6, Def.
4.2.1] that a strong transformation is a lax transformation with invertible 2-cell components. Supposing
that pc,c1q : pX ,Aq ÞÑ pY,Bq and pd,d1q : pX 1,A1q ÞÑ pY 1,B1q are 1-cells in B, the corresponding 2-cell
component of λ has the form λc,d : L

`

pc,c1q b pd,d1q
˘

ñ Lpc,c1q b Lpd,d1q, hence filling the following
square in SGame:

pX ,Aq b pX 1,A1q pY,Bq b pY 1,B1q

pX ,Aq b pX 1,A1q pY,Bq b pY 1,B1q

Lpc,c1qbLpd,d1q

Lppc,c1qbpd,d1qq

λc,d

Intuitively, these 2-cells witness the failure of the tensor Lpc,c1q b Lpd,d1q of the parts to account for
correlations that may be evident to the “whole system” L

`

pc,c1q b pd,d1q
˘

.

Just as we have monoidal lax functors, we can have monoidal lax transformations; again, see [7, §2.2].

Proposition B.8. Monoidal loss models and monoidal icons form a subcategory MonLosspBq of LosspBq,
and the symmetric monoidal structure p`,0q on the latter restricts to the former.

B.1 Examples

In this section, we present the monoidal structure on the loss models considered above. Because loss
models L are (lax) sections, following Remark B.7, this monoidal structure is given in each case by
a lax natural family of 2-cells λc,d : L

`

pc,c1q b pd,d1q
˘

ñ Lpc,c1q b Lpd,d1q, for each pair of lenses
pc,c1q : pX ,Aq ÞÑ pY,Bq and pd,d1q : pX 1,A1q ÞÑ pY 1,B1q. Such a 2-cell λc,d is itself given by a loss function

of type B b B1 XbX 1

ÝÝÝÑ‚ I satisfying the equation L
`

pc,c1q b pd,d1q
˘

“ Lpc,c1q b Lpd,d1q ` λc,d . Following [6,
Eq. 4.2.3], lax naturality requires that λ satisfy the following equation of 2-cells, where K denotes the
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laxator (with respect to horizontal composition ˛) with components Kpe,cq : Le ˛ Lc ñ Lpe ˝| cq:

pY,Bq b pY 1,B1q

pX ,Aq b pX 1,A1q pZ,Cq b pZ1,C1q

Lpcbdq Lpeb f q

L
´

pe˝|cqbp f ˝|dq

¯

Lpe˝|cqbLp f ˝|dq

Kpeb f ,cbdq

λpe˝|c, f ˝|dq

“

pY,Bq b pY 1,B1q

pX ,Aq b pX 1,A1q pY,Bq b pY 1,B1q pZ,Cq b pZ1,C1q

Lpcbdq Lpeb f q

Lpe˝|cqbLp f ˝|dq

LcbLd LebL f

λpc,dq λpe, f q

Kpe,cqbKp f ,dq

Since vertical composition in SGame is given on losses by `, we can write this equation as

λ pe ˝| c, f ˝| dq ` Kpe b f ,c b dq

“ λ pe, f q ˛ λ pc,dq ` Kpe,cq b Kp f ,dq

“ λ pe, f qcbd ` λ pc,dq ˝ pe1 b f 1qcbd ` Kpe,cq b Kp f ,dq . (5)

In each of the examples below, therefore, we establish the definition of the laxator λ and check that it
satisfies equation 5.

We will often use the notation p´qX to denote projection onto a factor X of a monoidal product.

B.1.1 Relative entropy

Proposition B.9. The loss model KL of Proposition 3.14 is lax monoidal. Supposing that pc,c1q : pX ,Xq ÞÑ

pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component λKLpc,dq of the
laxator is given, for ω : IÑ‚ X b X 1 and py,y1q : Y bY 1, by

λ
KLpc,dqωpy,y1q :“ E

px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

„

log
pωX bωX1 px,x1q

pωpx,x1q

ȷ

` log
ppcbdq ‚ωpy,y1q

ppcbdq ‚pωX bωX1 qpy,y1q
.

B.1.2 Maximum likelihood estimation

Proposition B.10. The loss model MLE of Proposition 3.16 is lax monoidal. Supposing that pc,c1q :
pX ,Xq ÞÑ pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component λMLEpc,dq

of the laxator is given, for ω : IÑ‚ X b X 1 and py,y1q : Y bY 1, by

λ
MLEpc,dqωpy,y1q :“ log

ppcbdq ‚pωX bωX1 qpy,y1q

ppcbdq ‚ωpy,y1q
.
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B.1.3 Free energy

Corollary B.11. The loss model FE of Definition 3.17 is lax monoidal. Supposing that pc,c1q : pX ,Xq ÞÑ

pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component λFEpc,dq of the
laxator is given, for ω : IÑ‚ X b X 1 and py,y1q : Y bY 1, by

λ
FEpc,dqωpy,y1q :“ E

px,x1q„pc1
ωX

bd1
ωX1

qpy,y1q

„

log
pωX bωX1 px,x1q

pωpx,x1q

ȷ

.

B.1.4 Laplacian free energy

Proposition B.12. The loss model LFE of Propositions 3.21 and 3.23 is lax monoidal. Supposing that
pc,c1q : pX ,Xq ÞÑ pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component
λLFEpc,dq of the laxator is given, for ω : IÑ‚ X b X 1 and py,y1q : Y bY 1, by

λ
LFEpc,dqωpy,y1q :“ log

pωX bωX1 pµpcbdq1
ω

py,y1qXX 1q

pωpµpcbdq1
ω

py,y1qXX 1q

where µpcbdq1
ω

py,y1qXX 1 is the pX b X 1q-mean of the Gaussian distribution pc1
ωX

b d1
ωX1

qpy,y1q.

C Proofs

C.1 Proof of Theorem 2.1

Proof. To show that Copara2pC q is a bicategory, we need to establish the unitality and associativity
of vertical composition; verify that horizontal composition is well-defined and functorial; establish the
weak unitality and associativity of horizontal composition; and confirm that the corresponding unitors
and associator satisfy the bicategorical coherence laws. Then, to prove that Copara2pC q is moreover
monoidal, we need to demonstrate that the tensor as proposed satisfies the data of a monoidal bicategory.
However, since the monoidal structure is inherited from that of C , we will elide much of this latter proof,
and demonstrate only that the tensor is functorial; the rest follows straightforwardly but tediously.

We begin by confirming that vertical composition d is unital and associative. To see that d is unital,
simply substitute the identity 2-cell (given by projection onto the coparameter) into the string diagram
defining d and then apply the comonoid counitality law twice (once on the left, once on the right).
The associativity of d requires that ϕ2 d pϕ 1 d ϕq “ pϕ2 d ϕ 1q d ϕ , which corresponds to the following
graphical equation:

ϕ ϕ 1 ϕ2 “ ϕ 1 ϕ2ϕ

To see that this equation is satisfied, simply apply the comonoid coassociativity law twice (once left, once
right).
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Next, we check that horizontal composition ˝ is well-defined, which amounts to checking whether the
horizontal composite of 2-cells satisfies the change of coparameter axiom. Again, we reason graphically.
Given 2-cells ϕ and γ between composable pairs of 1-cells f , f 1 and g,g1, our task is to verify that

f 1A
g1

C

N1

M1

B

“ f g

γ ˝ ϕ

N1

B

M1

A

C
.

Since ϕ and γ satisfy change of coparameter ex hypothesi, the left hand side is equal to the morphism

fA

M1

ϕ

g
C

N1
γ

B

.

By comonoid coassociativity, this is in turn equal to

f g

ϕ

γ
N1

B

M1

A

C

which, by the definition of ˝, is precisely equal to

f g

γ ˝ ϕ

N1

B

M1

A

C

and so this establishes the result.
We now verify that ˝ so defined is functorial on 2-cells, beginning with the preservation of composition.

We need to validate the equation pγ 1 ˝ ϕ 1q d pγ ˝ ϕq “ pγ 1 d γq ˝ pϕ 1 d ϕq (for appropriately composable
2-cells). This amounts to checking the following equation, which can be seen to hold by two applications



22 Statistical Games

of comonoid coassociativity:

ϕ

γ

A

M

B

N

C

ϕ 1

γ 1

N2

B

M2

“

ϕ ϕ 1

γ γ 1

A

M

B

N

C

B

M2

N2

It is easy to verify that ˝ preserves identities, i.e. that idg ˝ id f “ idg˝ f ; just substitute the identity 2-cells
into the definition of ˝ on 2-cells, and apply comonoid counitality four times.

Next, we establish that horizontal composition is weakly associative, which requires us to supply
isomorphisms α f ,g,h : ph ˝ gq ˝ f ñ h ˝ pg ˝ f q natural in composable triples of 1-cells h,g, f . Supposing
the three morphisms have the types f : A ÝÑ

M
B, g : B ÝÑ

N
C, and h : C ÝÑ

O
D, we can choose a f ,g,h to be the

2-cell represented by the morphism

A b
`

pM b Bq b ppN bCq b Oq
˘

b D
proj
ÝÝÑ pM b Bq b ppN bCq b Oq ¨ ¨ ¨

¨ ¨ ¨
αC

pMbBq,pNbCq,O
ÝÝÝÝÝÝÝÝÑ ppM b Bq b pN bCqq b O ¨ ¨ ¨

¨ ¨ ¨
αC

pMbBq,N,CbidO
ÝÝÝÝÝÝÝÝÝÑ pppM b Bq b Nq bCq b O

where the first factor is the projection onto the coparameter and αC denotes the associator of the monoidal
structure pb, Iq on C . In the inverse direction, we can choose the component α

´1
f ,g,h : h˝pg˝ f q ñ ph˝gq˝ f

to be the 2-cell represented by the morphism

A b
`

pppM b Bq b Nq bCq b O
˘

b D
proj
ÝÝÑ pppM b Bq b Nq bCq b O ¨ ¨ ¨

¨ ¨ ¨
α

C ,´1
pMbBq,N,CbidO

ÝÝÝÝÝÝÝÝÝÑ ppM b Bq b pN bCqq b O ¨ ¨ ¨

¨ ¨ ¨
α

C ,´1
pMbBq,pNbCq,O

ÝÝÝÝÝÝÝÝÑ pM b Bq b ppN bCq b Oq

where αC ,´1 denotes the inverse of the associator on pC ,b, Iq. That the pair of α f ,g,h and α
´1
f ,g,h constitutes

an isomorphism in the hom category follows from the counitality of the comonoid structures. That this
family of isomorphisms is moreover natural follows from the naturality of the associator on pC ,b, Iq.

We come to the matter that motivated the construction of Copara2pC q: the weak unitality of copy-
composition, witnessed here by the weak unitality of horizontal composition. We need to exhibit two
families of natural isomorphisms: the left unitors with components λ f : idB ˝ f ñ f , and the right unitors
with components ρ f : f ˝ idA ñ f , for each morphism f : A ÝÑ

M
B. Each such component will be defined

by a projection morphism, and weak unitality will then follow from the counitality of the comonoid
structures. More explicitly, λ f is witnessed by projM : A b M b B b B Ñ M; its inverse λ

´1
f is witnessed

by projMbB : A b M b B Ñ M b B; ρ f is witnessed by projM : A b A b M b B Ñ M; and its inverse ρ
´1
f is
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witnessed by projAbM : A b M b B Ñ A b M. Checking that these definitions give natural isomorphisms is
then an exercise in counitality that we leave to the reader.

All that remains of the proof that Copara2pC q is indeed a bicategory is to check that the unitors
are compatible with the associator (i.e., pidg ˝λ f q d αg,idB, f “ ρg ˝ id f ) and that associativity is order-
dependent (i.e., the associator α satisfies the pentagon diagram). The latter follows immediately from the
corresponding fact about the associator αC on pC ,b, Iq. To demonstrate the former, it is easier to verify
that pidg ˝λ f q d αg,idB, f d pρ´1

g ˝ id f q “ idg˝ f . This amounts to checking that the following string diagram
is equally a depiction of the morphism underlying idg˝ f :

id f

ρ´1
g

A

M

B

N

C

λ f

idg
N

B

M

(Note that here we have elided the associator from the depiction. This is allowed by comonoid counitality,
and because string diagrams are blind to bracketing.) Substituting the relevant morphisms into the boxes,
we see that this diagram is equal to

A

M

B

N

C
N

B

M

and six applications of counitality give us idg˝ f . This establishes that Copara2pC q is a bicategory.

C.2 Proof of Theorem 2.12

Proof. We only need to show that γ
:
π ‚δ

:
γπ is a Bayesian inversion of δ ‚γ with respect to π; the ‘moreover’

claim follows immediately because Bayesian inversions are almost surely unique [26, Prop. 4.1.28]. Thus,
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δ ‚ γ ‚ π has the following depiction;

δ

B N C

γ

A M

π

Since γ
:
π is a Bayesian inversion of γ with respect to π , this is equal to

δ

B N C

γ
:
π

γ

π

A M

.

By the coassociativity of copying, this in turn is equal to

δ

B N C

γ
:
π

γ

π

A M

.
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And since δ
:
γπ is a Bayesian inversion of δ with respect to pγπq , this is equal to

B

γ
:
π

A M C

δ
:
γπ

N

γ

π

δ

which establishes the result.

C.3 Proofs about statistical games (§3)

Proof of Theorem 3.3. Recall that every monoidal category M can be transformed into a one-object
bicategory, its delooping BM , with the 1-cells and 2-cells being the objects and morphisms of M , vertical
composition being composition in M , and horizontal composition being the tensor. This ‘delooping’ is
functorial, giving a 2-functor B : MonCat Ñ Bicat which, following Corollary 3.5, we can compose after
Statp´qp“, Iq (taking its domain as a locally discrete 2-category) to obtain indexed bicategories; we will
assume this transformation henceforth.

Next, observe that we can extend the domain of Statp´qp“, Iq to
ř

X :Coparal
2pC qcoop Stat2pXqcoop by

discarding the coparameters of the (coparameterized) state-dependent channels as well as the coparameter
on any reindexing, as in the following diagram of indexed bicategories:

ř

X :Coparal
2pC qcoop Stat2pXqcoop

ř

X :C op StatpXqop Bicat

ř

Stat2p´qp“,Iq

Statp´qp“,Iq

Here, the 2-cell indicates also discarding the coparameters of the ‘effects’ in Stat2p´qp“, Iq.

If we let L denote the composite functor in the diagram above, we can reason as follows:
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L :
ř

X :Coparal
2pC qcoop Stat2pXqcoop Ñ Bicat

sum/product
ś

X :Coparal
2pC qcoop BicatStat2pXqcoop

ś
ş

ś

X :Coparal
2pC qcoop 2FibpStat2pXqq

forget
Coparal

2pC qcoop Ñ Bicat
op

G : Coparal
2pC qcoop Ñ Bicat

where the first step uses the adjointness of (dependent) sums and products; the second applies the
bicategorical Grothendieck construction in the codomain; the third forgets the 2-fibrations, to leave only
the total bicategory; and the fourth step takes the pointwise opposite. We can thus write the action of G as
GpXq “

`ş

LpX ,´q
˘op.

Since each bicategory LpX ,Bq has only a single 0-cell, the 0-cells of each GpXq are equivalently just the
objects of C , and the hom-categories GpXqpA,Bq are equivalent to the product categories Stat2pXqpB,Aqˆ

StatpXqpB, Iq. That is to say, a 1-cell A Ñ B in GpXq is a pair of a state-dependent channel B X
ÝÑ‚ A along

with a correspondingly state-dependent effect on its domain B. We therefore seem to approach the
notion of statistical game, but in fact we are already there: SGameC is simply

ş

G, by the bicategorical
Grothendieck construction. To see this is only a matter of further unfolding the definition.

Proof sketch for Proposition 3.10. From [6, Theorem 4.6.13], we have that icons compose, giving a
category. Then note that, for any two loss models F and G and any n-cell α , Fpαq and Gpαq must only
differ on the loss component, and so we can sum the losses; this gives the monoidal product. The monoidal
unit is necessarily the constant 0 loss. Finally, observe that the structure is symmetric becauase effect
monoids are by Definition 3.1 commutative.

Proof of Proposition 3.14. Being a section of πLoss|B , KL leaves lenses unchanged, only acting to attach
loss functions. It therefore suffices to check that this assignment of losses is strictly functorial. Writing
‚ for composition in C , ˝ for horizontal composition in Stat2, ˝| in BayesLens2, and ˛ for horizontal
composition of losses in SGame, we have the following chain of equalities:

KL
`

pd,d1q ˝| pc,c1q
˘

π
pzq “ E

px,m,y,nq„pc1˝d1
cqπ pzq

”

log ppc1˝d1
cqπ

px,m,y,n|zq

´ log p
pc:˝d:

c qπ

px,m,y,n|zq

ı

“ E
py,nq„d1

c‚π pzq
E

px,mq„c1
π pyq

”

log pc1
π
px,m|yq pd1

c‚π
py,n|zq

´ log pc:
π

px,m|yq pd:
c‚π

py,n|zq

ı

“ E
py,nq„d1

c‚π pzq

”

log pd1
c‚π

py,n|zq ´ log pd:
c‚π

py,n|zq

` E
px,mq„c1

π pyq

”

log pc1
π
px,m|yq ´ log pc:

π

px,m|yq

ıı

“ DKL
`

d1
c‚πpzq,d:

‚πpzq
˘

` E
py,nq„d1

c‚π pzq

”

DKL
`

c1
πpyq,c:

πpyq
˘

ı

“ KLpd,d1qc‚πpzq `
`

KLpc,c1q ˝ d1
c
˘

π
pzq

“
`

KLpd,d1q ˛KLpc,c1q
˘

π
pzq
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The first line obtains by definition of KL and ˝| ; the second by definition of ˝; the third by the log adjunction
(logab “ loga ` logb) and by linearity of E; the fourth by definition of DKL; the fifth by definition of KL
and of ˝; and the sixth by definition of ˛.

This establishes that KL
`

pd,d1q˝| pc,c1q
˘

“ KLpd,d1q˛KLpc,c1q and hence that KL is strictly functorial
on 1-cells. Since we have assumed that the only 2-cells are the structural 2-cells (e.g., the horizontal
unitors), which do not result in any difference between the losses assigned to the corresponding 1-cells,
the only loss 2-cell available to be assigned is the 0 loss; which assignment is easily seen to be vertically
functorial. Hence KL is a strict 2-functor, and moreover a section of πLoss|B as required.

Proof of Proposition 3.16. We adopt the notational conventions of the proof of Proposition 3.14. Observe
that

MLE
`

pd,d1q ˝| pc,c1q
˘

π
pzq “ ´ log pd ‚c ‚πpzq “ MLEpd,d1qc‚πpzq .

By definition, we have

`

MLEpd,d1q ˛MLEpc,c1q
˘

π
pzq “ MLEpd,d1qc‚πpzq `

`

MLEpc,c1q ˝ d1
c
˘

π
pzq

and hence by substitution

`

MLEpd,d1q ˛MLEpc,c1q
˘

π
pzq “ MLE

`

pd,d1q ˝| pc,c1q
˘

π
pzq `

`

MLEpc,c1q ˝ d1
c
˘

π
pzq .

Therefore, MLEpc,c1q ˝ d1
c constitutes a 2-cell from MLEpd,d1q ˛MLEpc,c1q to MLE

`

pd,d1q ˝| pc,c1q
˘

, and
hence MLE is a lax functor. It is evidently moreover a section of πLoss|B, and, like KL, acts trivially on
the (purely structural) 2-cells.

Proof of Lemma 3.21. We can write the density functions of Gaussian channels as:

log pγpm,y|xq “
1
2

@

εγ ,Σγ
´1

εγ

D

´ log
b

p2πq|Y | detΣγ

log pρπ
px,m|yq “

1
2

@

ερπ
,Σρπ

´1
ερπ

D

´ log
b

p2πq|X | detΣρπ
(6)

log pπpxq “
1
2

@

επ ,Σπ
´1

επ

D

´ log
b

p2πq|X | detΣπ

where for clarity we have omitted the dependence of Σγ on x and Σρπ
on y, and where

εγ :“ pm,yq ´ µγpxq ,

ερπ
:“ px,mq ´ µρπ

pyq , (7)

επ :“ x ´ µπ .

Then, recall that we can write the free energy FEpγ,ρqπpyq as the difference between expected energy and
entropy:

FEpγ,ρqπpyq “ E
px,mq„ρπ pyq

“

´ log pγpm,y|xq ´ log pπpxq
‰

´ SXbM
“

ρπpyq
‰

“ E
px,mq„ρπ pyq

“

Epγ,πqpx,m,yq
‰

´ SX
“

ρπpyq
‰
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Next, since the eigenvalues of Σρπ
pyq are small for all y : Y , we can approximate the expected energy by

its second-order Taylor expansion around the mean µρπ
pyq:

FEpγ,ρqπpyq « E
px,mq„ρπ pyq

«

Epγ,πqpµρπ
pyq,yq `

@

ερπ
px,m,yq,

`

Bpx,mqEpγ,πq

˘`

µρπ
pyq,y

˘D

`
1
2

A

ερπ
px,m,yq,

´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

¨ ερπ
px,m,yq

E

ff

´ SXbM
“

ρπpyq
‰

paq
“ Epγ,πqpµρπ

pyq,yq `

B

E
px,mq„ρπ pyq

“

ερπ
px,m,yq

‰

,
`

Bpx,mqEpγ,πq

˘`

µρπ
pyq,y

˘

F

`
1
2

tr
”´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

Σρπ
pyq

ı

´ SXbM
“

ρπpyq
‰

pbq
“ Epγ,πqpµρπ

pyq,yq `
1
2

tr
”´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

Σρπ
pyq

ı

´ SXbM
“

ρπpyq
‰

where
´

B2
px,mq

Epγ,πq

¯

`

µρπ
pyq,y

˘

is the Hessian of Epγ,πq with respect to px,mq evaluated at pµρπ
pyq,yq.

The equality marked paq holds first by the linearity of expectations and second because

E
px,mq„ρπ pyq

«

A

ερπ
px,m,yq,

´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

¨ ερπ
px,m,yq

E

ff

“ E
px,mq„ρπ pyq

«

tr
”´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

ερπ
px,m,yqερπ

px,m,yqT
ı

ff

“ tr
„

´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

E
px,mq„ρπ pyq

”

ερπ
px,m,yqερπ

px,m,yqT
ı

ȷ

“ tr
”´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

Σρπ
pyq

ı

(8)

where the first equality obtains because the trace of an outer product equals an inner product; the second
by linearity of the trace; and the third by the definition of the covariance Σρπ

pyq. The equality marked pbq

above then holds because Epx,mq„ρπ pyq

“

ερπ
px,m,yq

‰

“ 0.
Next, note that the entropy of a Gaussian measure depends only on its covariance,

SXbM
“

ρπpyq
‰

“
1
2

logdet
`

2π eΣρπ
pyq

˘

,

and that the energy Epγ,πqpµρπ
pyq,yq does not depend on Σρπ

pyq. We can therefore write down directly the
covariance Σ˚

ρπ
pyq minimizing FEpγ,ρqπpyq as a function of y. We have

BΣρπ
FEpγ,ρqπpyq

pbq
«

1
2

´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘

`
1
2

Σρπ

´1

by equation pbq above. Setting BΣρπ
FEpγ,ρqπpyq “ 0, we find the optimum as expressed by equation (3):

Σ
˚
ρπ

pyq “
`

B2
x Epγ,πq

˘`

µρπ
pyq,y

˘´1
.

Finally, by substituting Σ˚
ρπ

pyq in equation (8), we obtain the desired expression, equation (1):

FEpγ,ρqπpyq « Epγ,πq

`

µρπ
pyq,y

˘

´ SXbM rρπpyqs “: LFEpγ,ρqπpyq .
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Proof of Proposition 3.23. Again we follow the notational conventions of the proof of Proposition 3.14.
Additionally, if ω is a state on a tensor product such as X bY , we will write ωX and ωY to denote its X
and Y marginals. We will continue to write c to denote the result of discarding the coparameters of a
coparameterized channel c.

Observe that, by repeated application of the linearity of E, the log adjunction, and the definitions of ‚

and ˝,

`

LFEpd,d1q ˛LFEpc,c1q
˘

π
pzq

“ LFEpd,d1qc‚πpzq `
`

LFEpc,c1q ˝ d1
c‚π

˘

π
pyq

“ LFEpd,d1qc‚πpzq ` E
py,nq„d1

c‚π pzq

“

LFEpc,c1qπpyq
‰

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚π pzq

”

log pd1
c‚π

py,n|zq ´ log pc
`

µc1
π
pyq,y

˘

´ log pπ

`

µc1
π
pyqX

˘

` E
px,mq„c1

π pyq

“

log pc1
π
px,m|yq

‰

ı

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚π pzq

“

´ log pc
`

µc1
π
pyq,y

˘

´ log pπ

`

µc1
π
pyqX

˘‰

` E
py,nq„d1

c‚π pzq

”

log pd1
c‚π

py,n|zq ` E
px,mq„c1

π pyq

“

log pc1
π
px,m|yq

‰

ı

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚π pzq

“

´ log pc
`

µc1
π
pyq,y

˘

´ log pπ

`

µc1
π
pyqX

˘‰

` E
py,nq„d1

c‚π pzq
E

px,mq„c1
π pyq

“

log pd1
c‚π

py,n|zq ` log pc1
π
px,m|yq

‰

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚π pzq

“

´ log pc
`

µc1
π
pyq,y

˘

´ log pπ

`

µc1
π
pyqX

˘‰

` E
px,m,y,nq„pc1˝d1

cqπ pzq

“

´ log ppc1˝d1
cqπ

px,m,y,n|zq
‰

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚π pzq

“

´ log pc
`

µc1
π
pyq,y

˘

´ log pπ

`

µc1
π
pyqX

˘‰

´ SXMY N
“

pc1 ˝ d1
cqπpzq

‰

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚π pzq

“

Epc,πq

`

µc1
π
pyq,y

˘‰

´ SXMY N
“

pc1 ˝ d1
cqπpzq

‰

where XMY N is shorthand for X b M bY b N.

Now, writing Eµ

pc,πq
pyq :“ Epc,πq

`

µc1
π
pyq,y

˘

, by the Laplace assumption, we have

E
py,nq„d1

c‚π pzq

“

Eµ

pc,πq
pyq

‰

« Eµ

pc,πq
pµd1

c‚π
pzqY q `

1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqYY

ı
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and so we can write

`

LFEpd,d1q ˛LFEpc,c1q
˘

π
pzq

« ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` Eµ

pc,πq
pµd1

c‚π
pzqY q `

1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqYY

ı

´ SXMY N
“

pc1 ˝ d1
cqπpzq

‰

“ ´ log pd
`

µd1
c‚π

pzq,z
˘

´ log pc
`

µc1
π
pµd1

c‚π
pzqY q,µd1

c‚π
pzqY

˘

´ log pπ

`

µc1
π
pµd1

c‚π
pzqY qX

˘

´ SXMY N
“

pc1 ˝ d1
cqπpzq

‰

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

`
1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqYY

ı

“ Epd‚c,πq

`

µpc1˝d1
cqπ

pzq,z
˘

´ SXMY N
“

pc1 ˝ d1
cqπpzq

‰

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

`
1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqYY

ı

“ LFE
`

pd,d1q ˝| pc,c1q
˘

π
pzq ´ log pc ‚π

`

µd1
c‚π

pzqY
˘

`
1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqYY

ı

.

Therefore, if we define a loss function κ by

κπpzq :“
1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqYY

ı

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

then κ constitutes a 2-cell LFEpd,d1q ˛LFEpc,c1q ñ LFE
`

pd,d1q ˝| pc,c1q
˘

, as required.

C.4 Proofs about monoidal statistical games (§B)

Proof of Proposition B.1. To establish that pCopara2pC q,b, Iq is a monoidal bicategory, we need to show
that b is a pseudofunctor Copara2pC qˆCopara2pC q Ñ Copara2pC q and that I induces a pseudofunctor
1 Ñ Copara2pC q, such that the pair of pseudofunctors satisfies the relevant coherence data. We will omit
the coherence data, and only sketch that the pseudofunctor b is well defined, leaving a full proof for later
work. (In the sequel here, we will not make very much use of this tensor.)

First, we confirm that b is locally functorial, meaning that our definition gives a functor on each
pair of hom categories. We begin by noting that b is well-defined on 2-cells, that ϕ b ϕ 1 satisfies that
change of coparameter axiom for f b f 1; this is immediate from instantiating the axiom’s string diagram.
Next, we note that b preserves identity 2-cells; again, this is immediate upon substituting identities
into the defining diagram. We therefore turn to the preservation of composites, which requires that
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pγ d ϕq b pγ 1 d ϕ 1q “ pγ b γ 1q d pϕ b ϕ 1q, and which translates to the following graphical equation:

ϕ γ

ϕ 1 γ 1

A

A1

M

M1

B

B1

O

O1

“

ϕ

ϕ 1

A

A1

M

M1

B

B1

γ

ϕ 1 O1

O

It is easy to see that this equation is satisfied: use the naturality of the symmetry of pC ,b, Iq. This
establishes that b is locally functorial.

Next, we confirm that b is horizontally (pseudo) functorial. First, we note that id f b id f 1 “ id f b f 1 by
the naturality of the symmetry of pC ,b, Iq. Second, we exhibit a multiplication natural isomorphism,
witnessing pseudofunctoriality, with components µg,g1, f , f 1 : pg b g1q ˝ p f b f 1q ñ pg ˝ f q b pg1 ˝ f 1q for
all composable pairs of 1-cells g, f and g1, f 1. Let these 1-cells be such that pg b g1q ˝ p f b f 1q has the
underlying depiction

fA g

C

N

M

B

f 1A1

g1 C1

N1

M1

B1

and so pg ˝ f q b pg1 ˝ f 1q has the depiction

f 1A1

g1 C1

N1

M1

B1
fA g

C

N

M

B

.

It is then easy to see that defining µg,g1, f , f 1 and its inverse µ
´1
g,g1, f , f 1 as the 2-cells with the following
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respective underlying depictions gives us the desired isomorphism:

N1

B1

N

B

M

M1

C

B1

M

N

C1

N1

B

M1

A

A1

and

N1

M1

B1

N

M

B

C

N

M

B

C1

N1

M1

B1

A

A1

.

The naturality of this definition is a consequence of the naturality of the symmetry of pC ,b, Iq.
That this tensor satisfies the monoidal bicategory axioms — of associativity, unitality, and coherence

— follows from the fact that the monoidal structure pb, Iq satisfies correspondingly decategorified versions
of these axioms; we leave the details to subsequent exposition.

Proof of Proposition B.9. We have

`

KLpcq bKLpdq
˘

ω
py,y1q

“ E
px,mq„c1

ωX
pyq

”

log pc1
ωX

px,m|yq ´ log pc:
ωX

px,m|yq

ı

` E
px1,m1q„d1

ωX1
py1q

„

log pd1
ωX1

px1,m1|y1q ´ log pd:
ωX1

px1,m1|y1q

ȷ

“ E
px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

„

log pc1
ωX

bd1
ωX1

px,x1,m,m1|y,y1q ´ log pc:
ωX bd:

ωX1

px,x1,m,m1|y,y1q

ȷ

and

`

KLpc b dqωpy,y1q

“ E
px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

”

log pc1
ωX

bd1
ωX1

px,x1,m,m1|y,y1q ´ log p
pcbdq

:
ω

px,x1,m,m1|y,y1q

ı

.

Using Bayes’ rule, we can rewrite the exact inversions in these expressions, obtaining

`

KLpcq bKLpdq
˘

ω
py,y1q

“ E
px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

”

log pc1
ωX

bd1
ωX1

px,x1,m,m1|y,y1q ´ log pcpy,m|xq ´ log pdpy1,m1|x1q

´ log pωX pxq ´ log pωX1 px1q ` log pc ‚ωX
pyq ` log pd ‚ωX1

py1q

ı
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and

`

KLpc b dqωpy,y1q

“ E
px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

”

log pc1
ωX

bd1
ωX1

px,x1,m,m1|y,y1q ´ log pcpy,m|xq ´ log pdpy1,m1|x1q

´ log pωpx,x1q ` log ppcbdq ‚ωpy,y1q

ı

.

We define λKLpc,dqωpy,y1q as the difference from
`

KLpc b dqωpy,y1q to
`

KLpcq bKLpdq
˘

ω
py,y1q, and so,

with a little rearranging, we obtain the expression above:

λ
KLpc,dqωpy,y1q :“

`

KLpc b dqωpy,y1q ´
`

KLpcq bKLpdq
˘

ω
py,y1q

“ E
px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

„

log
pωX bωX1 px,x1q

pωpx,x1q

ȷ

` log
ppcbdq ‚ωpy,y1q

ppcbdq ‚pωX bωX1 qpy,y1q
.

Next, we need to validate lax naturality. Since KL is strict on losses, we need only check that

λ
KLpe ˝| c, f ˝| dq “ λ

KLpe, f qcbd ` λ
KLpc,dq ˝ pe1 b f 1qcbd .

By definition, we have

`

λ
KLpe, f qcbd

˘

ω
pz,z1q

“ E
py,y1,n,n1q„

pe1
cb f 1

dqω pz,z1q

«

log
ppcbdq ‚pωX bωX1 qpy,y1q

ppcbdq ‚ωpy,y1q

ff

` log
ppeb f q ‚pcbdq ‚ωpz,z1q

ppeb f q ‚pcbdq ‚pωX bωX1 qpz,z1q

and

`

λ
KLpc,dq ˝ pe1 b f 1qcbd

˘

ω
pz,z1q

“ E
py,y1,n,n1q„

pe1
cb f 1

dqω pz,z1q

»

—

—

–

E
px,x1,m,m1q„

pc1
ωX

bd1
ωX1

qpy,y1q

„

log
pωX bωX1 px,x1q

pωpx,x1q

ȷ

` log
ppcbdq ‚ωpy,y1q

ppcbdq ‚pωX bωX1 qpy,y1q

fi

ffi

ffi

fl

.

And so we also have

λ
KLpe ˝| c, f ˝| dqωpz,z1q

“ E
px,x1,m,m1q„

`

pc1˝e1
cqbpd1˝ f 1

dq

˘

ω
pz,z1q

„

log
pωX bωX1 px,x1q

pωpx,x1q

ȷ

` log
ppeb f q ‚pcbdq ‚ωpz,z1q

ppeb f q ‚pcbdq ‚pωX bωX1 qpz,z1q

“
`

λ
KLpc,dq ˝ pe1 b f 1qcbd

˘

ω
pz,z1q `

`

λ
KLpe, f qcbd

˘

ω
pz,z1q

thereby establishing the lax naturality of λKL, by the commutativity of `.
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Proof of Proposition B.10. To obtain the definition of λMLEpc,dq, we consider the difference from
MLEpc b dq to MLEpcq bMLEpdq:

λ
MLEpc,dqωpy,y1q :“ MLEpc b dqωpy,y1q ´

`

MLEpcq bMLEpdq
˘

ω
py,y1q

“ ´ log ppcbdq ‚ωpy,y1q ` log pc ‚ωX
pyq ´ log pd ‚ωX1

py1q

“ log
ppcbdq ‚pωX bωX1 qpy,y1q

ppcbdq ‚ωpy,y1q
.

To demonstrate lax naturality, recall that MLE is a lax section, so we need to consider the corresponding
˛-laxator. From Proposition 3.16, the laxator KMLEpe,cq : MLEpeq ˛MLEpcq ñ MLEpe ˝| cq is given by
KMLEpe,cq :“ MLEpcq ˝ e1

c. Next, observe that

λ
MLEpe ˝| c, f ˝| dqωpz,z1q “ log

p`

pe‚cq bp f ‚dq

˘

‚pωX bωX1 q
pz,z1q

p`

pe‚cq bp f ‚dq

˘

‚ω
pz,z1q

“ log
ppeb f q ‚pcbdq ‚pωX bωX1 qpz,z1q

ppeb f q ‚pcbdq ‚ωpz,z1q

“ λ
MLEpe, f qpcbdq‚ωpz,z1q .

Consequently, we need to verify the equation

MLEpc b dq ˝ pe b f 1qcbd “ λ
MLEpc,dq ˝ pe1 b f 1qcbd `

`

MLEpcq bMLEpdq
˘

˝ pe1 b f 1qcbd

which, by bilinearity of effects, is equivalent to verifying

MLEpc b dq “ λ
MLEpc,dq `MLEpcq bMLEpdq .

But, since ` is commutative, this is satisfied by the definition of λMLEpc,dq as a 2-cell of type MLEpc b

dq ñ MLEpcq bMLEpdq.

Proof sketch for Corollary B.11. FE is defined as KL`MLE, and hence λFE is obtained as λKL ` λMLE.
Since ` is functorial, it preserves lax naturality, and so λFE is also lax natural. λFE is thus a strong
transformation FEp´q bFEp“q ñ FEp´ b “q, and hence FE is lax monoidal by Remark B.7.

Proof of Proposition B.12. We have

LFEpc b dqωpy,y1q

“ ´ log pcbdpµpc1bd1qω
py,y1q,y,y1q ´ log pωpµpc1bd1qω

py,y1qXX 1q

´ SXX 1MM1

“

pc1 b d1qωpy,y1q
‰

“ ´ log pcpµc1
ωX

pyq,yq ´ log pdpµd1
ωX1

py1q,y1q ´ pωpµpc1bd1qω
py,y1qXX 1q

´ SXM
“

c1
ωX

pyq
‰

´ SX 1M1

”

d1
ωX1

py1q

ı

and
`

LFEpcq bLFEpdq
˘

ω
py,y1q

“ LFEpcqωX pyq `LFEpdqωX1 py1q

“ ´ log pcpµc1
ωX

pyq,yq ´ pωX pµcωX
pyqX q ´ SXM

“

c1
ωX

pyq
‰

´ log pdpµd1
ωX1

py1q,y1q ´ pωX1 pµd1
ωX1

py1qX 1q ´ SX 1M1

”

d1
ωX1

py1q

ı
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so that

λ
LFEpc,dqωpy,y1q “ LFEpc b dqωpy,y1q ´

`

LFEpcq bLFEpdq
˘

ω
py,y1q

“ log
pωX bωX1 pµpcbdq1

ω
py,y1qXX 1q

pωpµpcbdq1
ω

py,y1qXX 1q

as given above.
We need to verify lax naturality, which means checking the equation

λ
LFEpe ˝| c, f ˝| dq ` κpe b f ,c b dq “ λ

LFEpe, f qcbd ` λ
LFEpc,dq ˝ pe1 b f 1qcbd ` κpe,cq b κp f ,dq

where κ is the ˛-laxator with components κpe,cq : LFEpeq ˛LFEpcq ñ LFEpe ˝| cq given by

κpe,cqπpzq “
1
2

tr
”´

B2
y Eµ

pc,πq

¯

`

µe1
c‚π

pzqY
˘

Σe1
c‚π

pzqYY

ı

´ log pc ‚π

`

µe1
c‚π

pzqY
˘

.

(see Proposition 3.23). We have

λ
LFEpe ˝| c, f ˝| dq “ log

pωX bωX1 pµpcbdq1
ω

pµpeb f q1
pcbdq‚ω

pz,z1qYY 1qXX 1q

pωpµpcbdq1
ω

pµpeb f q1
pcbdq‚ω

pz,z1qYY 1qXX 1q

“ λ
LFEpc,dqωpµpeb f q1

pcbdq‚ω
pz,z1qYY 1qXX 1q

and, by the Laplace approximation,

`

λ
LFEpc,dq ˝ pe1 b f 1qcbdqωpz,z1q

“ E
py,y1,n,n1q„

pe1
cb f 1

dqω pz,z1q

”

λ
LFEpc,dqωpy,y1q

ı

« λ
LFEpc,dqωpµpeb f q1

pcbdq‚ω
pz,z1qYY 1q

`
1
2

tr
”´

B2
py,y1qλ

LFEpc,dqω

¯´

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

¯

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

.

We also have

`

κpe,cq b κp f ,dq
˘

ω
pz,z1q

“ κpe,cqωX pzq ` κp f ,dqωX1 pz1q

“
1
2

tr
”´

B2
y Eµ

pc,ωX q

¯

`

µe1
c‚ωX

pzqY
˘

Σe1
c‚ωX

pzqYY

ı

´ log pc ‚ωX

`

µe1
c‚ωX pzqY

˘

`
1
2

tr
”´

B2
y1Eµ

pd,ωX1 q

¯

`

µ f 1
d‚ωX1

pz1qY 1

˘

Σ f 1
d‚ωX1

pz1qY 1Y 1

ı

´ log pd ‚ωX1

`

µ f 1
d‚ωX1

pz1qY 1

˘

“
1
2

tr
”´

B2
py,y1qE

µ

pcbd,ωX bωX1 q

¯

`

µpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qpYY 1qpYY 1q

ı

´ log ppcbdq ‚pωX bωX1 q

`

µpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qYY 1

˘

.
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The left-hand side of the lax naturality equation is therefore given by
`

λ
LFEpe ˝| c, f ˝| dq ` κpe b f ,c b dq

˘

ω
pz,z1q

“ λ
LFEpc,dqωpµpeb f q1

pcbdq‚ω
pz,z1qYY 1q

`
1
2

tr
”´

B2
py,y1qE

µ

pcbd,ωq

¯

`

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

´ log ppcbdq‚ω

`

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

˘

while the right-hand side is given by
`

λ
LFEpe, f qcbd ` λ

LFEpc,dq ˝ pe1 b f 1qcbd ` κpe,cq b κp f ,dq
˘

ω
pz,z1q

“ log
ppcbdq ‚pωX bωX1 qpµpeb f q1

pcbdq‚ω
pz,z1qYY 1q

ppcbdq ‚ωpµpeb f q1
pcbdq‚ω

pz,z1qYY 1q

` λ
LFEpc,dqωpµpeb f q1

pcbdq‚ω
pz,z1qYY 1q

`
1
2

tr
”´

B2
py,y1qλ

LFEpc,dqω

¯´

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

¯

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

`
1
2

tr
”´

B2
py,y1qE

µ

pcbd,ωX bωX1 q

¯

`

µpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qpYY 1qpYY 1q

ı

´ log ppcbdq ‚pωX bωX1 q

`

µpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qYY 1

˘

“ ´ log ppcbdq ‚ωpµpeb f q1
pcbdq‚ω

pz,z1qYY 1q ` λ
LFEpc,dqωpµpeb f q1

pcbdq‚ω
pz,z1qYY 1q

`
1
2

tr
”´

B2
py,y1qλ

LFEpc,dqω

¯´

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

¯

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

`
1
2

tr
”´

B2
py,y1qE

µ

pcbd,ωX bωX1 q

¯

`

µpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qpYY 1qpYY 1q

ı

.

The difference from the left- to the right-hand side is thus

1
2

tr
”´

B2
py,y1qE

µ

pcbd,ωq

¯

`

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

´
1
2

tr
”´

B2
py,y1qE

µ

pcbd,ωX bωX1 q

¯

`

µpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚pωX bωX1 q

pz,z1qpYY 1qpYY 1q

ı

´
1
2

tr
”´

B2
py,y1qλ

LFEpc,dqω

¯´

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

¯

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

.

Now, by definition Σpeb f q1
pcbdq‚ω

“ Σpeb f q1
pcbdq‚pωX bωX1 q

, and so by the linearity of the trace and of derivation,

this difference simplifies to

1
2

tr
”´

B2
py,y1q

´

Eµ

pcbd,ωq
´ Eµ

pcbd,ωX bωX1 q
´ λ

LFEpc,dqω

¯¯

`

µpeb f q1
pcbdq‚ω

pz,z1qYY 1

˘

Σpeb f q1
pcbdq‚ω

pz,z1qpYY 1qpYY 1q

ı

.
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Recall from the proof of Proposition 3.23 that Eµ

pc,πq
pyq :“ Epc,πq

`

µc1
π
pyq,y

˘

, and hence

`

Eµ

pcbd,ωq
´ Eµ

pcbd,ωX bωX1 q

˘

py,y1q

“
`

Epcbd,ωq ´ Epcbd,ωX bωX1 q

˘`

µpcbdq1
ω

py,y1q,y,y1
˘

“ ´ log pωpµpcbdq1
ω

py,y1qXX 1q ` log pωX bωX1 pµpcbdq1
ω

py,y1qXX 1q

“ log
pωX bωX1 pµpcbdq1

ω
py,y1qXX 1q

pωpµpcbdq1
ω

py,y1qXX 1q

“ λ
LFEpc,dqωpy,y1q

so that Eµ

pcbd,ωq
´ Eµ

pcbd,ωX bωX1 q
´ λLFEpc,dqω “ 0. This establishes that λLFE is lax natural.
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