
Data-Parallel Algorithms for String Diagrams
Paul Wilson1 and Fabio Zanasi2

1Independent
2University College London and University of Bologna

We give parallel algorithms for string diagrams represented as structured cospans
of ACSets. Specifically, we give linear (sequential) and logarithmic (parallel) time
algorithms for composition, tensor product, construction of diagrams from arbitrary
Σ-terms, and application of functors to diagrams.

Our datastructure can represent morphisms of both the free symmetric monoidal
category over an arbitrary signature as well as those with a chosen Special Frobenius
structure. We show how this additional (hypergraph) structure can be used to map
diagrams to diagrams of optics. This leads to a case study in which we define an
algorithm for efficiently computing symbolic representations of gradient-based learners
based on reverse derivatives.

The work we present here is intended to be useful as a general purpose datastructure.
Implementation requires only integer arrays and well-known algorithms, and is data-
parallel by constuction. We therefore expect it to be applicable to a wide variety of
settings, including embedded and parallel hardware and low-level languages.

1 Introduction
String diagrams are a formal graphical syntax [13] for representing morphisms of monoidal cat-
egories which is now widely used (see for example [7, 8, 9, 2]). The purpose of this paper is to
make string diagrams not just a convenient notation for algebraic reasoning, but also an efficient
general-purpose tool in computing with graphical structures in a compositional manner. To that
end, the datastructures and algorithms we define satisfy the following desiderata.

Fast and data-parallel. Our algorithms are data-parallel by construction, and have linear (se-
quential) and logarithmic (parallel) time complexities.

Minimal primitives. Our datastructures are defined in terms of simple integer arrays. Moreover,
we assume only a small number of simple, well-known primitive operations (e.g., prefix sum).
This makes it possible to implement our algorithms in a wide variety of settings, such as
embedded and parallel (i.e., GPU) hardware.

Simple to implement correctly. Key parts of our datastructure are defined in terms of the
recent construction of ACSets [11]. Consequently, implementations are essentially the same
as their categorical definitions, making it easier to ensure correctness.

A number of representations of string diagrams such as the wiring diagrams of Catlab [10]
have been explored in the literature. Our goals most closely align with the ‘hypergraph adjacency
representations’ of [15]: we aim to make string diagrams useful as a general purpose ‘scalable
combinatorial syntax’. For example, we hope that our implementation serves as an alternative in
cases where a programmer would currently use a tree or directed graph.

However, the primary motivating application for our work is in representing gradient-based
learners as optics, as described in [5]. In particular, this motivates perhaps the most significant
extension to [15]: our datastructures can ‘natively’ represent morphisms of the free symmetric
monoidal category over a signature with a chosen Special Frobenius monoid.

We now give a brief overview of the main contributions of our paper [16].

1

1.1 String Diagrams as Structured Cospans of ACSets
Our datastructure represents morphisms of FreeΣ+Frob (the free symmetric monoidal category over
the signature Σ+Frob) as structured cospans [1] of ACSets [11]. Diagrams represented in this way
form a symmetric monoidal category DiagramΣ+Frob which is isomorphic to FreeΣ+Frob. Pictured
below is a string diagram in FreeΣ+Frob (left) and its representation as a structured cospan (right).

A

A

C C

A

B

g

f

h

f

g

h

0

0
1

0 1

A B

A A

C

0

0

A

A

C

A

C

(1)

The center box, in grey, depicts a bipartite multigraph modelling the ‘internal wiring’ of the string
diagram, where ■-nodes represent the wires of the diagram, and ◦-nodes the operations.

1.2 Data-Parallel Algorithms
We give data-parallel algorithms with linear (sequential) and logarithmic (parallel) time complexity
for composition, tensor product, functor application, and for constructing a diagram from a Σ-term.
Note that the latter case is required to efficiently construct a diagram from a Σ-term such as the
one below, which corresponds to the diagram in (1).

#

#

⊗

⊗

id

⊗

⊗

f g

⊗

h id

⊗

⊗

id

The algorithm given for applying functors to diagrams exploits the hypergraph structure of
DiagramΣ+Frob. We define ‘Frobenius decompositions’ for this purpose (see below) which essen-
tially separate the wires and operations of a diagram.

f g ∼=
f

g

Applying a functor to diagrams of this kind then involves only its action on spiders and operations.

1.3 Diagrams of Optics and Reverse Derivatives
The hypergraph structure of DiagramΣ+Frob can also be used to efficiently compute composition
of optics [6, 12], as below.

−→
f

←−
f

−→g
←−g

−→
A

←−
A

−→
C

←−
C

−→
B

←−
B

M0 M1

This allows modeling applications with ‘bidirectional information flow’ such as [5, 14, 3]. In our
specific example, it allows us to define to an efficient algorithm for taking reverse derivatives [4]
(see below) and modeling gradient-based learners in general.

R[f]

A

A′

B

B′

f
B

Using our algorithm for applying functors to diagrams, this allows us to map diagrams to diagrams
of optics, and consequently gives an algorithm for taking reverse derivatives of diagrams in linear
(sequential) and logarithmic (parallel) time. More generally, this allows for mapping diagrams
with feedback in terms of the hypergraph structure to optics with feedback. That is, systems with
notions of both bidirectional information flow and recursion or iteration.

2

References
[1] John C. Baez and Kenny Courser. Structured cospans. 2019. DOI:

10.48550/ARXIV.1911.04630. URL https://arxiv.org/abs/1911.04630.
[2] Filippo Bonchi, Pawel Sobociński, and Fabio Zanasi. A Survey of Compositional Sig-

nal Flow Theory. In Advancing Research in Information and Communication Technol-
ogy, volume AICT-600, pages 29–56. 2021. DOI: 10.1007/978-3-030-81701-5_2. URL
https://hal.inria.fr/hal-03325995. part : TC 1: Foundations of Computer Science.

[3] Matteo Capucci, Neil Ghani, Jé rémy Ledent, and Fredrik Nordvall Forsberg. Translat-
ing extensive form games to open games with agency. Electronic Proceedings in Theoret-
ical Computer Science, 372:221–234, nov 2022. DOI: 10.4204/eptcs.372.16. URL https:
//doi.org/10.4204%2Feptcs.372.16.

[4] Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin
MacAdam, Gordon Plotkin, and Dorette Pronk. Reverse derivative categories, 2019.

[5] G. S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. Categorical
foundations of gradient-based learning, 2021. URL https://arxiv.org/abs/2103.01931.

[6] Bruno Gavranović. Space-time tradeoffs of lenses and optics via higher category theory, 2022.
[7] Fabrizio Genovese and Jelle Herold. A categorical semantics for hierarchical petri nets, 2021.
[8] Fabrizio Romano Genovese, Fosco Loregian, and Daniele Palombi. Nets with mana: A frame-

work for chemical reaction modelling, 2021.
[9] Dan R. Ghica, George Kaye, and David Sprunger. A compositional theory of digital circuits,

2022.
[10] Evan Patterson and other contributors. Algebraicjulia/catlab.jl: v0.12.2, May 2021. URL

https://doi.org/10.5281/zenodo.4736069.
[11] Evan Patterson, Owen Lynch, and James Fairbanks. Categorical data structures for technical

computing. Compositionality, 4:5, dec 2022. DOI: 10.32408/compositionality-4-5. URL https:
//doi.org/10.32408%2Fcompositionality-4-5.

[12] Mitchell Riley. Categories of optics, 2018.
[13] P. Selinger. A survey of graphical languages for monoidal categories. In New Structures for

Physics, pages 289–355. Springer Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-12821-9_4.
URL https://doi.org/10.1007%2F978-3-642-12821-9_4.

[14] Toby St. Clere Smithe. Bayesian updates compose optically, 2020.
[15] Paul Wilson and Fabio Zanasi. The cost of compositionality: A high-performance imple-

mentation of string diagram composition. 2021. DOI: 10.48550/ARXIV.2105.09257. URL
https://arxiv.org/abs/2105.09257.

[16] Paul Wilson and Fabio Zanasi. Data-parallel algorithms for string diagrams, 2023. URL
https://arxiv.org/abs/2305.01041.

3

https://doi.org/10.48550/ARXIV.1911.04630
https://doi.org/10.48550/ARXIV.1911.04630
https://arxiv.org/abs/1911.04630
https://doi.org/10.1007/978-3-030-81701-5_2
https://hal.inria.fr/hal-03325995
https://doi.org/10.4204/eptcs.372.16
https://doi.org/10.4204%2Feptcs.372.16
https://doi.org/10.4204%2Feptcs.372.16
https://arxiv.org/abs/2103.01931
https://doi.org/10.5281/zenodo.4736069
https://doi.org/10.32408/compositionality-4-5
https://doi.org/10.32408%2Fcompositionality-4-5
https://doi.org/10.32408%2Fcompositionality-4-5
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007%2F978-3-642-12821-9_4
https://doi.org/10.48550/ARXIV.2105.09257
https://arxiv.org/abs/2105.09257
https://arxiv.org/abs/2305.01041

	Introduction
	String Diagrams as Structured Cospans of ACSets
	Data-Parallel Algorithms
	Diagrams of Optics and Reverse Derivatives

