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We develop a rigorous theory of external influences on finite discrete dynamical systems, going
beyond the perturbation paradigm, in that the external influence need not be a small contribution. In-
deed, the covariance condition can be stated as follows: If we evolve the dynamical system for n time
steps and then disturb it, then it is the same as first disturbing the system with the same influence and
then letting the system evolve for n time steps. Applying the powerful machinery of resource theories,
grounded in category theory, we develop a theory of covariant influences both when there is a purely
deterministic evolution and when randomness is involved. Subsequently, we provide necessary and
sufficient conditions for the transition between states under deterministic covariant influences and
necessary conditions in the presence of stochastic covariant influences, predicting which transitions
between states are forbidden. Our approach, for the first time, employs the framework of resource
theories to the study of finite discrete dynamical systems. The language of category theory allows us
to articulate laws that unify the behaviour of different types of finite discrete dynamical systems, and
their mathematical flavour makes them rigorous and checkable.

This extended abstract is based on [18].
Dynamical systems describe the evolution of several interesting situations. In many cases, when the

evolution is particularly complex to deal with, one splits it into two parts: the uninfluenced part and the
perturbation, where the latter is interpreted as a small correction to the uninfluenced evolution [1, 10].
In this work, we go beyond the perturbation paradigm by introducing the notion of covariant influence,
which need not be a small contribution. The covariance condition guarantees that, despite not being
small, it preserves the underlying structure representing the evolution of states. In this way, the evolution
of a discrete dynamical system can be written as the composition of two evolutions: one is understood
as the basic evolution of the system, and the other is the covariant influence. The covariance requirement
ensures that the order in which these two parts are applied does not matter.

In order to develop a general theory of covariant influences in discrete dynamical systems with a
finite number of states, we employ the framework of resource theories [4, 16, 3], grounded in category
theory [6, 11, 13, 5]. This constitutes the first application of resource theories outside the physics domain,
to a field with countless applications to diverse areas of science, including genetic regulatory networks
[2, 9, 12].



2 Covariant influences for finite discrete dynamical systems

The general theory of covariant influences we develop comes in two flavours, corresponding to two
different underlying process theories [8, 7] on which the resource theory is built. The first is a determin-
istic one, based on the process theory of sets and functions, where randomness is completely forbidden
both in the initial state and in the action of the covariant influence. In the second, based on the process
theory of stochastic maps, instead, we allow the presence of randomness both in the initial state and in
the covariant influence. More precisely, the covariance condition is formulated as follows.

Definition 1. Let (A1,φ1) and (A2,φ2) be dynamical systems, where φi denotes the generator of the
uninfluenced evolution of Ai. A map f : A1 → A2 is called covariant if f ◦φ1 = φ2 ◦ f .

Here A denotes a system type of the process theory: a set in the deterministic case, the simplex of
probability vectors in the random case. We prove that the covariant condition on the processes of the
corresponding process theories gives rise to a partitioned process theory in the sense of Ref. [6], i.e. that
covariant maps form a strict symmetric monoidal subcategory of the underlying process theory. Note
that, unlike in the quantum resource theory of asymmetry [15, 14, 17], where a similar definition is
given, φi generates a monoid and not a group, i.e. φi is not invertible.

In such a setting, we analyze the issue of which transitions between the states of a dynamical system
are possible under covariant influences. We show that deterministic influences allow hopping between
attractors whose length becomes smaller and smaller, according to a divisibility criterion. Instead, in
the presence of randomness, all jumps between attractors become possible and the divisibility criterion
no longer holds. In particular, we achieve a full characterization of transitions between states in the
deterministic setting through a complete family of resource monotones, and in the random case, we
predict which transitions between states are forbidden.

To quote just the result for the deterministic case, in the process theories of sets and functions, we
have three different monotones:

1. Length ℓ: the period of the attractor in the same basin of attraction as the element s;

2. Transient progeny d: the number of time steps necessary to go from the element s to its attractor;

3. Ancestry a(s): the number of time steps necessary to reach the element s from its farthest prede-
cessor.

Such quantities can be used to build a complete family of monotones for the resource theory.

Theorem 1. Let s and s′ be two deterministic states of a discrete dynamical system (S,φ). Then there
exists a covariant influence converting s into s′ if and only if

d′ ≤ d, (1)

ℓ′ | ℓ, (2)

a
(
φ

n (s′
))

≥ a(φ n (s)) (3)

for n = 0, . . . ,d′−1.

In conclusion, the use of resource theories and category theory allows us to get a unified picture
of discrete dynamical systems under influences, regardless of the specifics of their evolutions, unlike
most standard approaches to discrete dynamical systems where a concrete model needs to be postulated.
In this way, our results, in the form of simple mathematical laws, can be phrased in general terms, so
they are applicable to a broad class of discrete dynamical systems. The key concept in our analysis is
covariance, which can be thought of as a symmetry in time evolution, and can be expressed by a simple
commutativity condition.
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