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The framework Catlab.jl seeks to expose the fundamental abstractions of category theory through
efficient, reusable software implementations in the Julia programming language. These abstractions can
then power domain-specific modeling frameworks and user-facing applications.

Computing with categories can take many forms. In recent years, the Catlab development team has
focused on combinatorial computing, creating an efficient, in-memory implementation of categorical
databases [10, 9], and on numerical computing, realizing quantitative functorial semantics through
interfaces with numerical solvers [7, 2]. Symbolic computing with categories in the style of computer
algebra systems, though it has always been part of our vision, has so far been less fully developed. In this
demo, we showcase an early but promising effort to integrate symbolic computing into the core of Catlab.
We are developing this functionality in a new package called Gatlab.jl.

Gatlab is inspired by Cartmell’s generalized algebraic theories (GATs), a logical system combining
algebraic theories with dependent types [4, 5]. Unlike ordinary algebraic theories, GATs are expressive
enough to formulate the theory of categories, as well as most theories of categories with extra structure,
such as monoidal categories and categories with chosen products or limits. In contrast to the equally
expressive logical systems of essentially algebraic theories [6], [1, §3.D] and finite limit sketches [3],
GATs possess an intuitive syntax in which category-theoretic definitions resemble their textbook forms.
As a simple example, the reader will recognize the definition of a category in the GAT below.

@theory ThCategory begin

# Type constructors: objects and morphisms.

Ob::TYPE

Hom(dom, codom)::TYPE ⊣ [dom::Ob, codom::Ob]

# Term constructors: composition and identities.

(f · g)::Hom(a,c) ⊣ [(a,b,c)::Ob, f::Hom(a,b), g::Hom(b,c)]

id(a)::Hom(a,a) ⊣ [a::Ob]

# Axioms: associativity and unitality.

assoc := ((f · g) · h) == (f · (g · h)) ⊣ [(a,b,c,d)::Ob, f::Hom(a,b), g::Hom(b,c), h::Hom(c,d)]

idl := id(a) · f == f ⊣ [(a,b)::Ob, f::Hom(a,b)]

idr := f · id(b) == f ⊣ [(a,b)::Ob, f::Hom(a,b)]

end

In fact, GATs have been implemented in Catlab since nearly the project’s inception, where they
have played two major roles: as an organizing principle and as a symbolic syntax. In the first role, the
categorical structures abounding in applied category theory are systematically recorded as GATs. Specific
Julia types and functions are then declared to be instances of GATs. For example, nonnegative integers
and numerical matrices are an instance of the theory of biproduct categories. In addition, given a GAT,
Catlab mechanically generates Julia types for expression trees in the GAT, yielding useful symbolic data
structures for objects and morphisms in categories. Both roles can be seen as defining models of GATs:
instances are models based arbitrary Julia code and symbolic expressions are free or initial models.

https://github.com/AlgebraicJulia/Catlab.jl
https://github.com/AlgebraicJulia/Gatlab.jl
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Gatlab is a complete rewrite of the GAT system in Catlab, with a new design intended to improve
the system’s capabilities in both its roles. Gatlab gives a central place to the category of GATs, whose
objects are GATs and morphisms are (equivalence classes of) interpretations [5, §12]. An interpretation
of one GAT T in another T ′ sends type and term constructors in T to type and term expressions in T ′, such
that all axioms in T are derivable from axioms in T ′. To simplify computations in the category of GATs,
Gatlab separates the combinatorial structure of GATs and GAT expressions from their human-readable
names, encoding the former using de Bruijn levels and maintaining the latter as auxiliary data. With
this design, complex theories can be built up from simpler ones using category-theoretic operations. For
example, the theory of symmetric rig categories is the pushout of two copies of the theory of symmetric
monoidal categories, augmented by distributivity isomorphisms and coherence axioms.

A more general notion of morphism of GATs is based on contexts and realizations in a GAT [5, §13]. A
morphism of GATs T → T ′ sends each type constructor in T to a context in T ′ and each term constructor
in T to a realization in T ′, compatibly with the axioms. Morphisms of GATs act contravariantly on models:
given a GAT morphism F : T → T ′, any model M of the theory T ′ pulls back to a model F∗(M) of the
theory T . A great many categorical constructions arise in this way. To give just one example, for any
cartesian monoidal category C, there is a monoidal category Lens(C) whose objects are pairs of objects
in C and whose morphisms are lenses in C. Using Gatlab, this construction can be defined by a GAT
morphism from the theory of monoidal categories to the theory of cartesian categories:

Lens = @theory_map ThMonoidalCat ThCartesianCat begin

Ob => [pos::Ob, dir::Ob]

Hom(A,B) => [expose::Hom(A.pos, B.pos), update::Hom(A.pos Ö B.dir, A.dir)]

f · g => begin

let A, F = f.dom.pos, g.codom.dir

expose = f.expose · g.expose

update = (copy(A) Ö id(F)) · (id(A) Ö f.expose Ö id(F)) · (id(A) Ö g.update) · f.update

end

f ⊗ g => begin

let A1, A2, D2 = f.dom.pos, g.dom.pos, g.codom.dir

expose = f.expose Ö g.expose

update = (id(A1) Ö swap(D1, A2) Ö id(D2)) · (f.update Ö g.update)

end

[...]

end

Using metaprogramming, we can then perform correct-by-construction transfer of Julia instances
from one theory to another. In this example, any valid instance of a cartesian category automatically gives
a valid monoidal category of lenses.

Turning to the second role (symbolic reasoning), Gatlab will provide automated equational reasoning
in GATs by integrating GAT expressions with e-graphs. E-graphs extend the classic union-find data
structure from equivalence relations on elements of a set to congruence relations on expression trees,
efficiently representing many equalities between expressions within a single data structure [8, 11]. As
a first example, applying the equality saturation procedure to a finite presentation of a category will
enumerate (possibly without termination) the distinct morphisms in the category. We will also use
e-graphs to efficiently implement C-sets presented as colimits of representable, complementing the
combinatorial implementation of categorical databases with a symbolic one.

Combinatorial, symbolic, and numerical computing are traditionally the purview of distinct software
systems, even distinct programming languages. Catlab aims to unify them within a single framework,
designed along category-theoretic principles to compute with category-theoretic structures. The work-in-
progress demonstrated in Gatlab takes another step toward realizing that vision.
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