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Constructor theory is a meta-theoretic approach that seeks to characterise concrete theories of physics
in terms of the (im)possibility to implement certain abstract “tasks” by means of physical processes.
Process theory, on the other hand, pursues analogous characterisation goals in terms of the compo-
sitional structure of said processes, concretely presented through the lens of (symmetric monoidal)
category theory. In this work, we show how to formulate fundamental notions of constructor the-
ory within the canvas of process theory. Specifically, we exploit the functorial interplay between
the symmetric monoidal structure of the category of sets and relations, where the abstract tasks live,
and that of symmetric monoidal categories from physics, where concrete processes can be found to
implement said tasks. Through this, we answer the question of how constructor theory relates to the
broader body of process-theoretic literature, and provide the impetus for future collaborative work
between the fields.

1 Introduction

Constructor theory [18, 19, 31] is a metatheoretic approach that seeks to characterise concrete theories of
physics and information in terms of the possibility and impossibility of tasks, which are transformations
between systems. Transformations may require auxiliary inputs other than the system to be transformed:
the task of turning black shoes into white shoes may require a stock of white paint as an auxiliary input in
addition to the black shoes themselves. Tasks transform states of systems into other states, and attributes
of systems—such as the blackness of a shoe—into other attributes. In our universe, we will eventually run
out of white paint for this task, but if we had a mathematically ideal paintbrush with infinite white paint,
we could reuse it for as many instances of the task as we’d like; such non-exhaustible auxiliary catalysts
for tasks are called constructors. A task is possible when it is partnered with a constructor that allows the
task to be performed arbitrarily many times, and the task is impossible otherwise. Though constructors
and tasks are abstract, they provide explanatory value; constructor theory seeks to characterise physical
theories in terms of what tasks are possible. As a metatheory, constructor theory is implementation-
agnostic, and one can choose whatever formal system of mathematics they like as a concrete language to
interpret the italic terms above.
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2 Constructor theory as Process Theory

Process theories provide one such mathematically formal language, one particularly well-suited to
describe the composition of processes in space-time. Moreover, process theories are expressed in terms
of string diagrams, which are an aesthetic, intuitive, flexible, and rigorous metalinguistic syntax, em-
powering the modeller by allowing them to operate at a level of abstraction of their choice. This means
that the same abstract diagrams provide a common syntactic foundation for fields as disparate as linear
and affine algebra [7, 6], first order logic [25], electrical circuits [5], digital circuits [22], database opera-
tions [27, 36], spatial relations [35], game theory [26], petri nets [4], hypergraphs [3], probability theory
[9, 21], causal reasoning [29], machine learning [17], and quantum theory [16, 15], to name just a few.

In this short paper we provide a formal interpretation of constructor-theoretic terminology and ideas
within the string-diagrammatic setting of process theories, with the intent to build a bridge between the
two communities. We caution against the view that constructor theory is “just” a class of process theories,
in the same sense as it would be misguided to claiming that prime numbers are “just” integers. Process
theory merely provides a rigorous mathematical language for constructor theorists to tell their stories.

For the process theorists in our audience, we wish to stress that the pedagogical mathematical pre-
sentation of this paper is for the sake of constructor theorists who might be approaching our field for the
first time. Regardless, we offer you a Rosetta stone for constructor theory within what we understand to
be the de rigueur mathematics of the field, transliterated into diagrams with as few embellishments and
interpretational choices as possible. For the constructor theorists in our audience, we extend a warm in-
vitation to joint the process-theoretic community: to the best of our knowledge, this is the most attractive
and general formal arena available within which to explore the ramifications of constructor theory.

2 Conceivable Tasks

Constructor theory is concerned with the study of physical theories in terms of the question “which
tasks are performable within this physical theory?”: there is an abstract notion of conceivable tasks and
a concrete notion of possible tasks. In seminal work by Deutsch [18], it was remarked that, in full
generality, the only real requirement on conceivable tasks is arbitrary composability in sequence and
in parallel, i.e. that they form a symmetric monoidal category (SMC). 1 Back then, however, the same
author made a specific choice to model tasks as relations between sets: constructor theory literature has
stuck by this choice ever since, and so will we.
Remark 2.1. In this work, we take all monoidal categories to be strict, and in particular we assume that
objects obj(D) in a monoidal category D form a strict monoid. In the case of the SMCs Rel and Set –
considered in Definition 2.3 – this implies a choice of singleton set 1 := {∗} to act as a strict unit for the
Cartesian product:

X ×1 = X = 1×X

This also affords us the freedom to write triples (and other tuples) without having to care about nesting:

X ×Y ×Z = {(x,y,z) | x ∈ X ,y ∈ Y,z ∈ Z}

Note that strictness does not extend to symmetry isomorphisms: we have that X ×Y ∼= Y ×X , but this
doesn’t mean that X ×Y = Y ×X . As a consequence, the monoid formed by objects in a strict SMC is
not generally commutative.

1It is possible that Deutsch meant for substrates to have an individual identity as physical systems, rather than just a “type”:
that is, it is possible that Deutsch would prefer for “this qubit” and “that qubit” to be modelled by different—albeit isomorphic—
objects in a process theory. In this case, it would make no sense to consider parallel compositions of tasks involving the “same”
physical system, and partially-monoidal categories as defined in [23] would be preferable as a process-theoretical universe.
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We take the theory of conceivable tasks to be Rel, the †-SMC – see [2] – of sets and relations. We
write A : X → Y for a task/relation A⊆ X ×Y , where the set X labels legitimate input states for the task
and the set Y labels legitimate output states. To help distinguish between pairs/tuples of elements in a
Cartesian product and pairs of domain/codomain elements in a relation, we reserve pair/tuple notation
for the former and adopt maplet notation for the latter:

x 7→ y :≡ (x,y) x A7→ y :≡ (x,y) ∈ A

We omit A from A7→ when clear from context. The sequential composition B◦A : X → Z of task B : Y →
Z after A : X → Y is defined as follows:

B◦A :=
{

x 7→ z
∣∣∣ ∃y ∈ Y.x A7→ y and y B7→ z

}
Sequential composition in diagrammatic language:

BA

X Y Z

Composite sets of states are obtained by Cartesian product X ×Y :

X ×Y := {(x,y) | x ∈ X and Y ∈ Y}

The parallel composition A×B : X ×Z → Y ×W of tasks A : X → Y and B : Z → W is defined as
follows:

A×B :=
{
(x,z) 7→ (y,w)

∣∣∣ x A7→ y and z B7→ w
}

Parallel composition in diagrammatic language:

A

B

X Y

Z W

The transpose A† : Y → X of a task A : X → Y is defined as follows:

A† :=
{

y 7→ x
∣∣∣ x A7→ y

}
Transposition in diagrammatic language:

A†

XY

Finally, there are symmetry isomorphisms (aka swaps) σX ,Y : X ×Y
∼=→ Y ×X :

σX ,Y := {(x,y) 7→ (y,x) | x ∈ X and y ∈ Y}



4 Constructor theory as Process Theory

Symmetry isomorphisms in diagrammatic language:

X

Y

Y

X

The symmetry isomorphisms are a structural feature of the category, making it possible to compose
relations into acyclic networks, where outputs of relations can be connected to inputs of other relations.
This is made possible by the following properties of the symmetry isomorphisms:

∀XY =

X

Y

X

YX

Y X

Y

∀WXY Z

∀A : X → Y

∀B : Z →W B

A B

A

=

X

YZ Z

X

Y

WW

Remark 2.2. The sets X and Y are allowed to be distinct, for sake of generality. Asking that they are
always equal is equivalent to restricting the theory of conceivable tasks to be the †-SMC EndoRel of sets
and endo-relations R : X → X , which is a sub-†-SMC of Rel.

If we restrict our attention to the total deterministic relations in Rel, we obtain the sub-SMC Set
of sets and functions between them. Functions are closed under acyclic network composition (sequen-
tial and parallel, including the usage of symmetry isomorphisms), but not under transpose. Important
examples of functions are the copy map δX : X → X ×X and discarding map εX : X 7→ 1 on a set X :

δX := {x 7→ (x,x) | x ∈ X}
εX := {x 7→ ∗ | x ∈ X}

Copy and delete maps in diagrammatic language:

X
X

X

δX εX

X
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Copies are indistinguishable under swaps and repeated copies, and deleting a copy results in the identity:

=

=

=

The transposes of the copy and discarding map are not functions. The transpose δ
†
X : X ×X → X is the

match map, a partial function which returns the common value of its inputs when they’re equal and is
otherwise undefined:

δ
†
X := {(x,x) 7→ x | x ∈ X}

Match map in diagrammatic language:

X
X

X

δ
†
X

Relations S : 1 → X , such as the transpose ε
†
X : 1 → X of the discarding map, can be identified with all

possible attributes of states in X , i.e. with all possible subsets S ⊆ X :

S ∼= {∗ 7→ x | x ∈ S}

States and attributes have the same notation in diagrammatic language, since states x∈X can be identified
with singleton subsets {x} ⊆ X :

S X

The transpose ε
†
X : 1 → X of the discarding map is the trivial attribute, corresponding to subset X ⊆ X :

ηX := ε
†
X = {∗ 7→ x | x ∈ X}

Trivial attribute in diagrammatic language:

ηX

X

Attributes can be used to condition tasks to specific input states.
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Definition 2.3. Let A : X × Z → Y be a task and let S ⊆ Z be an attribute on states in Z. The pre-
conditioned task is defined to be the task obtained by forgetting all information about the Z input of A
other than the fact that the input state has attribute S:

A

X

Z
S

Y

A◦(idX×S)

=
{

x 7→ y
∣∣∣ ∃z ∈ S.(x,z) A7→ y

}

As a special case, we can discard the Z input entirely, by pre-conditioning against the trivial attribute ηZ:

A

X

Z

Y

A◦(idX×ηZ)

=
{

x 7→ y
∣∣∣ ∃z ∈ Z.(x,z) A7→ y

}

The object 1 is terminal in Set: there is a unique function εX : X → 1 for any set X . However, it is
not terminal in Rel: the relations X → 1 are exactly the transposes S† : X → 1 of the attributes S : 1 → X .
Explicitly, they are the constant partial functions with the attribute S as their domain:

S† := {x 7→ ∗ | x ∈ S}

The transposes of attributes are tests, which can be used to condition tasks to specific output states.
Definition 2.4. Let A : X → Y × Z be a task and let S ⊆ Z be an attribute on states in Z. The post-
conditioned task is defined to be the task obtained by forgetting all information about the Z output of A
other than the fact that the output state has attribute S:

A

X

Z
S

Y

(idX×S†)◦A

=
{

x 7→ y
∣∣∣ ∃z ∈ S.x A7→ (y,z)

}

As a special case, we can discard the Z output of the task entirely, by post-conditioning against the trivial
attribute on Z:

A

X

Z

Y

(idX×εZ)◦A

=
{

x 7→ y
∣∣∣ ∃z ∈ Z.x A7→ (y,z)

}

Remark 2.5. We can simultaneously pre-condition a task A : X ×Z →Y ×W against an attribute P ⊆ Z
and post-condition it against an attribute Q ⊆W :

A

P Q

X Y

Z W
(idX×Q†)◦A◦(idX×P)

=
{

x 7→ y
∣∣∣ ∃p ∈ P,q ∈ Q.(x, p) A7→ (y,q)

}
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3 Possible Tasks

Conceivable tasks are a theory-independent concept: they provide a formal universe within which to
formulate principles and derive constraints. On the other hand, possible tasks are theory-dependent,
induced by the constructors physically available to implement them. In order to determine which tasks
are possible, we need to make a choice of substrates within a theory of processes.
Definition 3.1. A choice of substrates (C,Σ,Γ) comprises:

1. A reference theory of processes, in the form of a strict SMC C = (obj(C) ,⊗, I).2

2. A choice of substrates, in the form of a subset Σ ⊆ obj(C) of systems in the theory of processes.

3. A choice of sets of substrate states, in the form of a family Γ = (ΓH)H∈Σ
where ΓH ⊆ statesC(H)

is a set of states – morphisms I → H in C – for each substrate H ∈ Σ.
We require that the choice of substrates be closed under parallel composition: I ∈ Σ and H⊗K ∈ Σ for all
H,K∈ Σ. We further require that the choice of substrate states respects parallel composition of substrates:
ΓI = 1 and ΓH⊗K = ΓH×ΓK for all H,K ∈ Σ.3

Given two substrates H,K ∈ Σ, we consider tasks ΓH → ΓK and ask which ones are possible within
the given theory of processes: in short, a task is possible when there is a constructor which acting as a
catalyst enables the task to be performed. Expanding on this, we come to the following definitions.
Definition 3.2. Let (C,Σ,Γ) be a choice of substrates and consider two substrates H,K ∈ Σ. A process
f : H→ K is task-inducing if it maps states in ΓH to states in ΓK:

∀ρ ∈ ΓH. f (ρ) ∈ ΓK

We write ⌊ f ⌋ for the task induced by f :

⌊ f ⌋ := {ρ 7→ f (ρ) | ρ ∈ ΓH}

Definition 3.3. Let (C,Σ,Γ) be a choice of substrates and consider a task A : ΓH → ΓK. We say that A is
possible if there are:

(i) a substrate C (acting as a constructor for the task)

(ii) an attribute P ⊆ ΓC (singling out the relevant constructor states)

(iii) a task-inducing process f : H⊗C→ K⊗C (actually performing the task)
such that the following two conditions are satisfied:

1. Task A is obtained from the induced task ⌊ f ⌋ by requiring that the input constructor state has
attribute P and discarding the constructor output:

A=
P

⌊ f ⌋

ΓH ΓK

ΓC ΓC

(idΓK
×εΓC

)◦⌊ f ⌋◦(idΓH
×P)

=
{

ρ 7→ ρ
′ ∣∣ ∃γ ∈ P,γ ′ ∈ ΓC. f (ρ ⊗ γ) = ρ

′⊗ γ
′}

2This could, for instance, be the theory of finite-dimensional quantum systems and unitary transformations. However, to the
best of our knowledge, the available literature so far only considers Rel – insofar as the tensor ⊗ is cartesian product – whereas
for quantum one wants the kronecker product of hilbert spaces as the tensor.

3This “cartesian” substrate requirement is known in the constructor-theoretic literature as ”the principle of locality”: the
state of a combined system is the ordered collection of the states of the parts.
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2. The attribute P is preserved by the induced task ⌊ f ⌋. While a particular constructor state γ ∈ P
may be modified to become γ ′ by the underlying process of the induced task ⌊ f ⌋, γ ′ remains a
constructor state for the same induced task ⌊ f ⌋, i.e. γ ′ ∈ P. In Rel, this constraint is equivalently
expressed as the induced task ⌊ f ⌋ sending the set of constructors P to a subset of itself, regardless
of the input and output on the substrates H,K:

⌊ f ⌋

ΓKΓH

ΓCΓC
P

⊆ P

(εΓK
×idΓC

)◦⌊ f ⌋◦(ηΓH
×P)⊆P

We write (C,Σ,Γ)✓ for the set of possible tasks under the given choice of substrates.

The main result of this section is that possible tasks for a choice of substrate form a sub-SMC of Rel,
i.e. that they are closed under composition in arbitrary (acyclic) networks.

Proposition 3.4. The possible tasks (C,Σ,Γ)✓ for a given choice of substrates form a sub-SMC of Rel.

Proof. Write C = (obj(C) ,⊗, I). The identity tasks and swap tasks for all systems are made possible by
the identity and symmetry isomorphisms of C, with trivial constructor C := I:

ΓHΓH

ΓH

ΓK

ΓK

ΓH

The sequential composition B◦A of possible tasks A and B, with constructors C and D respectively, is
possible with constructor C⊗D: 4

AB

A B

ΓK

ΓD

ΓL

ΓD

ΓH ΓK

ΓC ΓC

◦ =

ΓK

ΓD

ΓC

ΓC

ΓH ΓL

ΓC×ΓD ΓC×ΓD

The parallel composition B×A of possible tasks A and B, with constructors C and D respectively, is

4This step of the proof becomes more complicated if constructors are forced to have individual identities (i.e. in a partially
monoidal category) and the same constructor must be reused by task B after being used by task A. We leave the handling of
this more sophisticated process-theoretic interpretation of constructor theory to future work.



S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 9

possible with constructor C⊗D: 5

A B

ΓL

ΓD

ΓM

ΓD

ΓH ΓK

ΓC ΓC

× =

ΓH×ΓL ΓK×ΓM

ΓC×ΓD ΓC×ΓD

A

B

Without loss of generality, we may gloss over choice of conserved attributes for constructors, since
substrates for constructors remain diagrammatically distinct by design, which allows the conditions of
Definition 3.3 to be verified for the composites we have presented. This completes our proof.

4 Attributes as states

Recent perspectives in constructor theory argue that tasks should be defined on the attributes of a sub-
strate, rather than on the underlying states. This captures the idea that the abstract specification of
(possible) tasks—the basis upon which constructor theorists judge other theories of physics—should be
based on the observable “macrostates” of a physical system (attributes/subsets of a set), rather than on
the unobserved “microstates” which constitute them (states/elements of a set). In this section, we show
how the attribute-based perspective can be derived from the state-based perspective, in a compositionally
sound way, by performing a suitable coarse-graining.

To start with, we define a notion of “coarse-graining” for tasks, moving from tasks defined on
states (the “microstates”, to stick to the thermodynamical metaphor) to tasks defined on attributes (the
“macrostates”, using the same metaphor). We allow for the attributes involved to have non-trivial
overlap—that is, we don’t ask for them to form a partition—but we disallow nesting S ⊂ T of different
attributes; formally, we require for the set of attributes involved to form an “antichain” in the inclusion
order ⊆.

Definition 4.1. Let X be a set. A set X̄ ⊆ P(X) of attributes on X is an antichain if no two attributes
are nested into each other:

∀S,T ∈ X̄ .S ⊆ T ⇒ S = T

Having fixed a choice of attributes X̄ on X and Ȳ on Y , any task A : X →Y induces a “coarse-grained
task” on the sets of attributes, as follows: for attributes S ∈ X̄ and T ∈ Ȳ , we say that S 7→ T in the
coarse-grained task if whenever an input state x ∈ X has attribute S, i.e. whenever x ∈ S, then at least
one of the possible outputs states

{
y ∈ Y

∣∣∣ x A7→ y
}

has attribute T , i.e. ∃y ∈ T.x A7→ y. Put it another way,
S 7→ T in the coarse-grained task means that the output of task A can have attribute T whenever the input
has attribute S.

5This step of the proof becomes more complicated if constructors are forced to have individual identities and the same
constructor must be simultaneously used by task B and task A. We leave the handling of this more sophisticated process-
theoretic interpretation of constructor theory to future work.
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Definition 4.2. Let A : X → Y be a task. Let X̄ ⊆ P(X) and Ȳ ⊆ P(Y ) be sets of attributes of X and Y
respectively. Then the coarse-grained task A|ȲX̄ : X̄ → Ȳ is defined as follows:

A|ȲX̄ :=
{

S 7→ T
∣∣ S ∈ X̄ , T ∈ Ȳ , S ⊆ A† ◦T

}
We conclude this section with three results, piecing the coarse-graining story together. Firstly, we

prove that given any process theory of tasks—including, amongst many others, the theory of all con-
ceivable tasks and all theories of possible tasks—the coarse-grainings of the tasks can themselves be
arranged into a process theory. This shows that tasks defined on attributes are just as compositionally
sound as those defined on states. Secondly, we remark how the original ordinary tasks, defined on states,
can be compositionally embedded into the universe of coarse-grained tasks, proving that the latter are a
sound generalisation of the former. Finally, we remark that coarse-grained tasks can be embedded back
into the universe of ordinary tasks, proving that ordinary tasks are as expressive as coarse-grained ones.

Proposition 4.3. Let C be a sub-SMC of Rel, i.e. a collection of systems and tasks closed under parallel
and sequential composition. The following defines a SMC C , which we refer to as the theory of coarse-
grained tasks associated to C :

• objects are all possible antichains of attributes for all possible sets of states:

obj
(
C
)

:=
⋃

X∈obj(C )

{X̄ ⊆ P(X) | X̄ antichain}

• morphisms X̄ → Ȳ in C̄ are coarse-grained tasks corresponding to tasks X → Y :

C (X̄ ,Ȳ ) :=
{
A|ȲX̄

∣∣∣ A : X C−→ Y
}

• sequential composition ◦ is inherited from C

• parallel composition ⊠ on objects is defined as:

X̄ ⊠ Ȳ := {S×T | S ∈ X̄ , T ∈ Ȳ}

• parallel composition ⊠ on morphisms arises by coarse-graining from that of C :

A|ȲX̄ ⊠B|W̄Z̄ := (A×B) |Ȳ⊠W̄
X̄⊠Z̄

• identity and symmetry isomorphisms arise by coarse-graining from those of C :

idX |X̄X̄ = idX̄ σX ,Y |X̄⊠Ȳ
X̄⊠Ȳ = σX̄ ,Ȳ

In particular, morphisms are well-defined, i.e. whenever X̄ = X̄ ′ and Ȳ = Ȳ ′ we have:{
Ā
∣∣ A : X → Y

}
=
{
Ā
∣∣ A : X ′ → Y ′}

Proof. Objects are clearly well-defined, but well-definition of morphisms requires proof. Let X and Y
be sets, let X̄ ⊆ P(X) and Ȳ ⊆ P(Y ) be antichains. It suffices to show the following for X ′ :=

⋃
X̄ ⊆ X

and Y ′ :=
⋃

Ȳ ⊆ Y : {
A|ȲX̄

∣∣∣ A : X → Y
}
=
{
A|ȲX̄

∣∣∣ A : X ′ → Y ′
}
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Write πX ′ := {x 7→ x|x ∈ X ′} : X → X and πY ′ := {y 7→ y|y ∈Y ′} : Y →Y . If S ∈ X̄ and T ∈ Ȳ , then S ⊆ X ′

and T ⊆ Y ′, and hence:

S ⊆ A† ◦T ⇔ S ⊆ πX ′ ◦A† ◦T ⇔ S ⊆ πX ′ ◦A† ◦πY ′ ◦T

Observing that πY ′ ◦A◦πX ′ is a task X ′ → Y ′ completes the proof that morphisms are well-defined. For
identities, we want to show that idX |X̄X̄ = idX̄ , and this is exactly the definition of X̄ being an antichain:

idX |X̄X̄ = idX̄ ⇔ [S ⊆ T ⇒ S = T ]

For symmetry isomorphisms, we want to show that σX ,Y |X̄×Ȳ
X̄×Ȳ = σX̄ ,Ȳ , and this again follows from the

antichain requirement:

σX ,Y |X̄⊠Ȳ
X̄⊠Ȳ = σX̄ ,Ȳ ⇔

[(
S×T ⊆ σ

†
X ,Y ◦ (T ′×S′)

)
⇒

(
S = S′ and T = T ′)]

⇔
[(

S ⊆ S′ and T ⊆ T ′)⇒ (
S = S′ and T = T ′)]

For sequential composition to be well-defined, we need to show that S ⊆ A† ◦T and T ⊆B† ◦U imply
S ⊆ (B◦A)† ◦U :

U ⊇ T S⊇A B A

For parallel composition to be well-defined, we need to show that S ⊆ A† ◦U and T ⊆ B† ◦V imply
S×T ⊆ (A⊠B)† ◦ (U ×V ):

U S

⊇

V T

X̄

Z̄

Ȳ

W̄

X̄

Z̄

A

B

The remaining checks are all straightforward, on similar lines.

Remark 4.4. Any sub-SMC C of Rel embeds into the associated theory of coarse-grained tasks C . The
embedding is the functor—faithful and injective on objects—defined by sending each set to the set of its
singleton subsets:

F(X) := {{x} | x ∈ X}

F (A : X → Y ) := A|ȲX̄ =
{
{x} 7→ {y}

∣∣∣ x A7→ y
}

It is straightforward to check that the mapping defined above is a strict monoidal functor, i.e. that it
preserves both sequential and parallel composition exactly (as well as identities, and symmetry isomor-
phisms, in this case).

Remark 4.5. Let C be a sub-SMC of Rel. The associated theory of coarse-grained tasks C embeds back
into Rel, via the identity functor:

F(X̄) := X̄ F
(
A|ȲX̄

)
:= A|ȲX̄
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The functor is strict monoidal when restricted to (the embedding of) C (into C ). It is not strict (or strong)
monoidal in general, because the tensor product on sets of attributes is not the same as the tensor product
on sets of states:

X̄ ⊠ Ȳ := {S×T | S ∈ X̄ , T ∈ Ȳ} ̸= {(S,T ) | S ∈ X̄ , T ∈ Ȳ}= X̄ × Ȳ

It is, however, lax monoidal, with the following structure morphisms:

[(S,T ) 7→ S×T ] : X̄ × Ȳ → X̄ ⊠ Ȳ [{∗} 7→ ∗] : 1̄ → 1

To see this, it suffices to observe that not only do S ⊆ A† ◦U and T ⊆B† ◦V imply S×T ⊆ (A⊠B)† ◦
(U ×V ), but also S×T ⊆ (A⊠B)† ◦ (U ×V ) implies both S ⊆ A† ◦U and T ⊆B† ◦V .

5 Concluding remarks

We have given categorical semantics for constructor theory interpreting to the best of our ability the
desired mathematical foundations both set out in Deutsch’s original paper [18] and expressed to us by
current practitioners. A long form presentation of the same content with worked examples from the con-
structor theory literature is in preparation. The reader may have noticed several mathematically unneces-
sary or physically counterintuitive complications, which were included in order to interpret constructor
theorists’ considerations faithfully. These have been addressed in footnotes, but we elaborate again here:

Principle of locality Constructor theorists desire “the principle of locality” [18, p.33]: that the state of
a combined system is the ordered collection of the states of the parts. This manifests in the categorical
semantics as the “cartesian” requirement on substrates ΓH⊗K = ΓH × ΓK in Definition 3.1. While the
physical appropriateness of locality is debatable, it is mathematically the case that generic tensor products
for symmetric monoidal categories conservatively and very fruitfully generalise cartesian products of
sets, especially to physical settings such as quantum theory.

Attributes and states In order to deal with thermodynamics and information [18, p.11-13], construc-
tor theorists prefer a distinction as early as possible between “microstates”, and “macrostates” or “at-
tributes”. This manifests in the categorical semantics as the discussion on coarse-grained tasks. Again,
whatever the physical status of the state/attribute distinction, in the process-theoretic setting, we have
shown (c.f. Remarks 4.4 and 4.5) that no mathematical distinction between micro- and macro- is neces-
sary as they are expressively equivalent.

“a” versus “this” The discussion of composing possible tasks in Section 3 highlights a case where the
mathematical interpretation settles a methodological question for constructor theory: whether construc-
tors ought to be defined for generic (i.e. ‘a shoe’) or particular substrates (i.e. ‘this shoe’). Here we
have presented the former reading, which manifests in the categorical semantics as the non-interactivity
of substrates during composition. The latter reading raises complications about the compositionality of
tasks, and we defer it in any case for future work.

Historical remarks. We close with two historical case studies intended to inform constructor theorists
of the topically-relevant history of process theories as applied to quantum theory, and to encourage the
pursuit of the possible-impossible dichotomy by illustrating some of the fruitful outcomes that may
result.
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Process theories arose from counterfactual reasoning. Possibility, read as what could happen, is at
the heart of constructor theory: here, constructor theory and process theories share a lineage of counter-
factual reasoning, tracing back to Aristotle’s distinction between “actual” and “potential”. One ancestor
of process theories along this lineage is the Geneva school of quantum logic [33, 30], which defined
the properties of physical systems in terms of experiments that could be performed [32], resulting in the
linearity of physical processes [20] due to an adjunction between cause and consequence (cf. weakest
precondition semantics in computer science [28]). This led to the development of a process-theoretic
framework for quantum theory, which encoded the structural consequences of an adjunction between
causes and consequences in terms of a quantaloid [12]. The underlying structure of spaces (= quantum
logics) was induced at the level of processes, and efforts were made to cast the composition of systems
in those terms through process-state duality [10]. However, the current success of process theories re-
lies on dumping quantum logics and replacing them with specially chosen processes (cf. cups and caps
[1]). A process theory, when formulated as a concrete symmetric monoidal category, is about possible
and impossible processes that obey the axioms of the corresponding category. Reconstructions of quan-
tum theory in terms of process theories turn these categorical axioms into physical postulates that are
considered more reasonable by some [24, 34].

Quantum from no-cloning. In constructor theory, the cut between possible and impossible tasks is
used to define theories, and it has been suggested that the impossibility to clone should yield quantum
theory, at least in a broad sense. In categorical quantum mechanics [1, 16, 15], dating back to at least
2006, classicality was indeed defined by the ability to clone [14]: this has resulted in the development
of spiders [13] and the ZX-calculus [11], now a prominent formalism in quantum foundations, quantum
computation, and general education on quantum theory.
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