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Chyp is a new interactive theorem prover for symmetric monoidal categories (SMCs). SMCs are a handy,
generic way to reason about collections of processes and compose sequentially and in parallel. There are
essentially two approaches one could take to express morphisms in such a category and to start to do formal,
equational reasoning.

1. The term approach: inductively construct terms using basic generators, identities, and swaps via
operations of sequential ( ; ) and parallel (⊗) composition. Work with equivalence classes of terms
modulo the symmetric monoidal category axioms; for example (f ; g) ⊗ (h ; k) ∼ (f ⊗ h) ; (g ⊗ k).

2. The diagram approach: work with string diagrams, i.e. diagrams whose basic morphisms are rep-
resented by boxes with input and output wires, where composition is represented by “plugging” boxes
together.

The advantage of the second approach is that all of the SMC axioms are absorbed in the diagrammatic
structure. Namely, two terms are equivalent according to the SMC axioms if and only if they generate
isomorphic string diagrams. On the other hand, diagrams want to be drawn, not typed, so they can be
unwieldy to input into a software tool or use within existing coding or automated theorem proving paradigms.
So, for formalising SMCs, is to better to use terms or diagrams? Chyp aims to break the impasse on this
decades-old question: use both!
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Chyp is a desktop application implemented in Python using Qt6 for Python (a.k.a. PySide6). Nearly all
interaction with Chyp happens in the code editor on the bottom half of the screen. In this editor, the user
writes a proof document, getting instant feedback as they type. If the cursor is over something that can be
pictured as a string diagram, that diagram appears in the top half of the window and it changes as soon as
the user makes changes. The tool produces generally very good-looking string diagrams from terms using a
new custom graph layout algorithm based on topological sorting and convex optimisation.

This is a source file written in a declarative language that resembles (a small fragment of) the kinds of
language used in a traditional interactive theorem prover like Isabelle or Coq. Statements exist for declaring
generators, named terms, and equations (a.k.a. rules) that hold between terms with the same numbers of
input/output wires. Proofs can be constructed as transitive chains of term equalities, where each step is
justified by a named equation arising from a basic rule or an earlier proof, e.g.

rewrite lemma1 :

f * h ; f ; g

= id * id * h ; id * f ; f ; g by assoc

= id * id * h ; id * f ; g * g ; id * sw * id ; f * f by bialg

This is somewhat reminiscent of the calc syntax1 used by the Lean theorem prover [2]. If the cursor is over
a step in a rewrite proof, that step turns green if it can be validated by the prover and red if it cannot. In
the case of a correct rule application, the LHS and RHS are also highlighted in the diagram above to show
exactly where the rule was applied.

Unlike a term-based theorem prover–or other tools based on more generalised notions of string diagrams
like DisCoPy2 [7] or Homotopy.io [1]–Chyp focuses specifically of SMCs, which enables it to use hypergraphs
and hypergraph rewriting under the hood. Cospans of hypergraphs, a.k.a. hypergraphs with boundary, can
be used to faithfully represent morphisms in a free symmetric monoidal category, and equational reasoning
can be captured by double-pushout graph rewriting. There is a lot of theory behind this, which is laid
out in detail in a three-part series of papers on String Diagram Rewrite Theory [4, 5, 6]. TLDR: Chyp
automatically understands terms up to the SMC axioms, or equivalently up to isomorphism of the associated
string diagrams. So, a proof step is validated if and only if it follows from a single application of the given rule,
up to the axioms of an SMC. This enables the user to ignore structural axioms completely in the construction
of proofs.

Terms in a Chyp proof can get quite large, so it is not always convenient for the user to have to explicitly
compute and write the result of each rewrite step. In fact, one of the biggest advantages of tool support is to
let a proof assistant let you quickly explore the consequences of rules without necessarily having a full proof
in mind beforehand. This kind of automated rewriting is supported in Chyp via an Agda-like [3] syntactic
feature called holes. For example, we can let Chyp finish lemma1 from the example above automatically. We
start by writing something like this:

rewrite lemma1 :

f * h ; f ; g

= ? by assoc

The “?” indicates a hole, which we would like Chyp to fill for us using the rule provided. If we place the
cursor over this step, it will turn red. Pressing CTRL+N will ask Chyp to find the next way to fill this hole.
To do so, it will find the first application for the rule assoc in the LHS, apply it, and replace “?” with the
result. Of course there might be more than one way one could apply a given rule, yielding different results.
Pressing CTRL+N multiple times will cycle through them. For repeated applications of the same rule, pressing
CTRL+SHIFT+N will insert a new line “= ? by RULE” where RULE is the rule used on the current line, and
automatically expand the first application.

This tool is a work in progress, but is already usable for defining rules and doing calculations in an SMC.
Many more features are planned, such as LaTeX exporting of proofs, rewriting modulo Frobenius structure,
automated proofs via tactics, induction/recursion, and a more structured proof language. Currently the
codebase is small and relatively simple (∼ 2500 lines of Python code, open-source Apache 2 licensed), so this
could be a great starting point for many new projects.

1https://leanprover-community.github.io/extras/calc.html
2DisCoPy implements several different representations for morphisms in many types of monoidal categories, including one

using cospans of hypergraphs. However, it currently does not support hypergraph rewriting.
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