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Compositionality is at the heart of computer science and several other areas of applied category
theory such as computational linguistics, categorical quantum mechanics, interpretable AI, dynamical
systems, compositional game theory, and Petri nets. However, the meaning of the term seems to vary
across the many different applications. This work contributes to understanding the different kinds of
compositionality, and in particular, towards qualifying different kinds of compositionality.

Formally, we introduce invariants of categories that we call zeroth and first homotopy posets,
generalising in a precise sense the π0 and π1 of a groupoid. These posets can be used to obtain a
qualitative description of how far an object is from being terminal and a morphism is from being
iso. In the context of applied category theory, this formal machinery gives us a way to qualitatively
describe the “failures of compositionality”, seen as failures of certain (op)lax functors to be strong, by
classifying obstructions to the (op)laxators being isomorphisms.

Failure of compositionality, for example for the interpretation of a categorical syntax in a semantic
universe, can both be a bad thing and a good thing, which we illustrate by respective examples in
graph theory and quantum theory.

Acknowledgements A.H. was supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001) and by the Estonian Research Council grant PSG764.

Introduction

Compositionality is probably the most relevant principle in applied category theory (ACT) research. While
there is no unified definition of it [14, 10, 5], it refers, broadly speaking, to certain forms of relation
between properties, behaviours, or observations of a composite system on one hand, and those of its
components on the other. A common concern, in this context, is whether it is possible to derive properties
of the whole from properties of its parts, and vice versa. In some cases, both directions are viable and
inverse to each other, in which case a property is “fully compositional”. More frequently, only one
direction is viable.

The need to formally quantify and/or qualify compositionality has been widely discussed in the
ACT community at least since 2018, as researchers became increasingly aware of various “failures of
compositionality”, and wished to classify them beyond a simple yes-or-no statement.

Let us be more precise. Much research in ACT has been devoted to the study of open systems, that is,
entities with open interfaces that can be composed with other entities of the same kind. This approach has
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2 Obstructions to Compositionality

been pervasive, and has been applied in the study of categorical quantum mechanics [1], natural language
[6], dynamical systems [9], Petri nets [4], game theory [10] and many other subjects. While studying open
systems, it is not rare to define functors mapping a “theory of boxes” where the composition rules of the
systems being studied are defined, in the form of a monoidal category or bicategory, to a certain “semantic
universe” of properties or behaviours of the systems. The properties of these functors reflect how well the
information that they capture adheres to the composition rules: a lax functor means that one can derive
information on the whole system from information on its components; an oplax functor means that one
can derive information on the components from information on the whole; while a strong functor means
that the information on components and the information on the whole completely determine each other.

For example, the functor sending open graphs to their reachability relation (see Section 3.1) is lax,
which tells us that the reachability relation of a composition of open graphs can be strictly bigger than
the composition of the reachability relations defined on its parts. This is considered undesirable from a
computational viewpoint, as it means that one cannot reconstruct the reachability of a graph by separately
computing the reachability of its components.

On the other hand, in “Schrödinger compositionality” (covered in Section 3.2), quantum-mechanical
behaviour arises from the laxity of the functor mapping each object to its set of states. This laxity implies
that not all quantum states are separable, which is desirable, as it unlocks the use of entanglement as a
resource unavailable in classical mechanics.

In both cases, laxity represents a “failure of compositionality” which has both practical and foundational
importance: the “gap” between a lax and a strong functor represents the gap between what we can compute
compositionally with a “divide-and-conquer” strategy and what we cannot, or the gap between a classical
and non-classical theory of processes. In this light, the question: how can we qualify (failures of)
compositionality? becomes the question: how far is a lax functor from being strong?1 In this paper, we
attempt to give a structured answer to the question. Our chain of reasoning is the following.

Definition 1. A lax functor between bicategories is strong when all the components of its laxators are
isomorphisms.

Thus, we can think of reducing our question to the more general one: how far is a morphism from being
an isomorphism?2 Let us use the following, well-known characterisation of isomorphisms.

Proposition 1. A morphism f : X → Y in a category C is an isomorphism if and only if it is terminal as
an object of the slice category C/Y .

This allows us to reduce further to the question: how far is an object from being terminal? Terminality
can be split into the following pair of properties.

Definition 2. An object 1 in a category C is

• weak terminal if, for all objects X of C, there exists a morphism X → 1;

• subterminal if, for all parallel pairs of morphisms f ,g : X → 1, we have f = g.

Hence, to describe how far 1 is from being terminal, we can separately describe how far 1 is from
being weak terminal and subterminal, respectively.

Following this chain of reasoning, we focus on classifying obstructions to weak terminality and
subterminality for objects in arbitrary categories. Surprisingly, it turns out that there exists a natural way
of associating certain pointed posets to a pointed category (category with a chosen object), which we call

1We will focus on lax functors in our discussion, but everything can be dualised to oplax functors.
2This approach, and the fact that it could be investigated with homotopical methods, was first suggested to us by Jules Hedges.
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the zeroth and first homotopy poset, because in a precise sense they generalise the π0 and π1 of a pointed
groupoid seen as a homotopy 1-type. This opens up the possibility of an invariant-based approach to the
formal study of compositionality: the homotopy posets contain no information that is not already in the
functors and categories, but put it in a form which may be more tractable and intelligible.

In Section 1, we give the definitions of homotopy posets and state their basic properties, demonstrating
in which sense they answer our question about terminal objects. In Section 2, going backwards in our
chain of reasoning, we apply them to the study of obstructions to morphisms being iso. Finally, in
Section 3, we sketch through a couple of simple examples how our framework can be applied to the study
of failures of compositionality, seen as failures of certain (op)lax functors to be strong.

1 Homotopy posets

To begin, we focus on obstructions to weak terminality. Having fixed a category C, we interpret objects of
a category C as points, and morphisms between them as paths. From this point of view, a weak terminal
object is an object that is always reachable from any generic object x in C.

Intuitively, we can fix a “weak terminal object candidate”3 1 and consider any object x such that there
is no morphism x→ 1 as an obstruction to weak terminality. Moreover:

• If x,y are obstructions for 1, and there are morphisms x→ y and y→ x, we regard them as equivalent:
if there were a morphism x→ 1 there would be a morphism y→ 1, and vice versa.

• If x,y are obstructions for 1 and there is a morphism x→ y, then we regard x as a “more fundamental
obstruction than y”. This is because, if there were a morphism y→ 1, we would automatically
obtain a morphism x→ 1 by composition (one can “go from x to y and then to 1”), while the
opposite is not true.

We will devote this section to making this intuition formal.

Definition 3 (Poset reflection). Let Pos be the large4 category of posets and order-preserving maps. There
is a full and faithful functor ı : Pos ↪→ Cat, whose image consists of the categories that are

• thin (each hom-set contains at most one morphism), and

• skeletal (every isomorphism is an automorphism).

The poset reflection ∥C∥ of a category C is its image under the left adjoint ∥−∥ : Cat→ Pos to ı:

• the elements of ∥C∥ are equivalence classes ∥x∥ of objects x of C, where ∥x∥= ∥y∥ if and only if
there exist morphisms x→ y and y→ x in C, and

• ∥x∥ ≤ ∥y∥ if and only if there exists a morphism x→ y in C.

Proposition 2. Let C be a category and 1 an object in C. The following are equivalent:

(a) 1 is a weak terminal (respectively, initial) object in C;

(b) ∥1∥ is the greatest (respectively, least) element of ∥C∥.
3In this paper, we will use 1 to denote “terminal object candidates”, that is, objects for which we want to investigate how far

they are from being terminal. For an object that we know or presume to be terminal, we will instead use the notation 1.
4We will denote categories in italics and large categories in bold. Note that in our constructions, what matters is only the

relative size: a construction which associates a poset to a category can be applied to a large category, producing a large poset.
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Definition 4 (Arrow category). Let I⃗ be the “walking arrow” category, that is, the free category on the
graph

0 1a
.

The arrow category of a category C is the functor category CI⃗ . Explicitly, the objects of CI⃗ are morphisms
of C, while morphisms of CI⃗ are commutative squares in C. There are functors dom, cod: CI⃗ → C which,
given a morphism (h0,h1), return h0, respectively, h1.

Definition 5 (Category of pointed objects). Let C be a category with a chosen terminal object 1. A
pointed object (x,v) of C is an object x of C together with a morphism v : 1→ x, called its basepoint. The
category of pointed objects of C — denoted by C• — is the coslice category 1/C.

Proposition 3 (Functoriality of arrow and pointed objects categories). Let F : C→ D be a functor. Then
F lifts to a functor FI⃗ : CI⃗ → DI⃗ using the pointwise action of F on C.

If moreover C and D have a chosen terminal object, and if F preserves it, then it also lifts to a functor
F• : C•→ D• sending a pointed object (x,v) of C to (Fx,Fv), a pointed object of D.

Definition 6 (Quotient of an object by a morphism). Let C be a category with chosen pushouts and a
terminal object 1. Given a morphism f : x→ y, the quotient of y by f is the pushout

x 1

y y� f

!

f [x]

⌟

where ! : x→ 1 is the unique morphism from x to the terminal object.

Proposition 4 (Functoriality of the quotient). If C has chosen pushouts and a terminal object 1, then for
each morphism f : x→ y in C, Definition 6 determines a pointed object Q( f ) := (y� f , [x]) of C. This
extends to a functor Q : CI⃗ → C•.

Lastly, if both C and D have chosen pushouts and a chosen terminal object 1, and if F preserves them,
then F induces a commutative square of functors

CI⃗ C•

DI⃗ D•.

Q

FI⃗

Q

F•

Now, the categories Cat and Pos have all limits and colimits, so in particular they have pushouts and a
terminal object. The poset reflection functor ∥−∥ : Cat→ Pos sends the terminal category to the terminal
poset, and preserves pushouts, since it is a left adjoint. The preservation can be made strict with respect to
a choice on both sides. We are thus in the conditions of Proposition 4: There is a commutative square of
functors

CatI⃗ Cat•

PosI⃗ Pos•.

Q

∥−∥I⃗

Q

∥−∥• (1)
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We are now ready to define the object of interest of this section.

Definition 7 (Zeroth homotopy poset). Let C be a category and x an object in C. The zeroth homotopy
poset of C over x is the pointed poset

(π0(C/x), [x])

obtained by applying the functor CatI⃗ → Pos• from Equation 1 to the slice projection functor

dom: C/x→ C.

Let us unravel the definition of π0(C/x) to a more explicit form. We start from the projection
dom: C/x→C. To this we may either apply Q or ∥−∥I⃗ . Since quotients in Pos are simpler to compute
than quotients in Cat, we apply poset reflection first, which gives us an order-preserving map

∥dom∥ : ∥C/x∥→ ∥C∥.

Unravelling the explicit definition of poset reflection for C/x, we see that:

• an element of ∥C/x∥ is an equivalence class ∥ f : y→ x∥ of morphisms of C with codomain x, where
∥ f∥= ∥g∥ if and only if f factors through g and g factors through f , and

• ∥ f∥ ≤ ∥g∥ if and only if f factors through g.

The map ∥dom∥ sends ∥ f∥ to ∥dom f∥. The image of ∥dom∥ is then the set

{∥y∥ | there exists a morphism f : y→ x in C},

which is, equivalently, the lower set of ∥x∥ in ∥C∥.
Applying Q : PosI⃗ → Pos• to this map produces the quotient of ∥C∥ with all elements of this set

identified, pointed with the element resulting from their identification, which we denote by [x]. Hence, an
element of π0(C/x) is either [x], or it is ∥y∥ for some object y such that there exists no morphism f : y→ x
in C. The order relation is defined as follows, by case distinction:

• [x]≤ [x] trivially;

• [x]≤ ∥y∥ if and only if there exists a span (x
f←− z

g−→ y) in C;

• it is never the case that ∥y∥ ≤ [x];

• ∥y∥ ≤ ∥z∥ if and only if there exists a morphism f : y→ z in C.

Notice that [x] is always minimal in π0(C/x).
We see that π0(C/x) captures the intuition we gave in the beginning of this section: it allows us

to qualitatively rank obstructions to weak terminality, organizing them into a poset structure, with the
minimal element [x] representing all the “non-obstructions”. Indeed, we have:

Proposition 5. Let C be a category and x an object in C. The following are equivalent:

(a) π0(C/x) = {[x]};
(b) x is a weak terminal object in C.

The notation and terminology is suggestive of the π0 of a pointed topological space or groupoid, that is,
its set of connected components, pointed with the connected component of the basepoint. The following
result shows that, indeed, the notions coincide when C happens to be a groupoid.
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Proposition 6 (π0(G/x) for a groupoid). Let G be a groupoid and x an object in G. Then

1. π0(G/x) is a “set”, that is, a discrete poset, and

2. as a pointed set, it is isomorphic to the set π0(G) of connected components of G, pointed with the
connected component of x.

Now, we investigate obstructions to subterminality. Our main strategy will be to recast subterminality
in a way that allows us to leverage Definition 7. We know that an object 1 fails to be subterminal when,
for an object x, the arrow x→ 1 is not unique. As such, we will describe obstructions to subterminality as
pairs of parallel, unequal arrows.

Definition 8 (Category of parallel arrows over an object). Let C be a category and x an object in C. The
category of parallel arrows in C over x is the category Par(C/x) where:

• Objects are pairs of morphisms ( f0, f1 : y→ x) with codomain x.

• A morphism from ( f0, f1 : y→ x) to (g0,g1 : z→ x) is a morphism h : y→ z such that f0 = h #g0
and f1 = h #g1.

This comes with a projection functor dom: Par(C/x)→ C sending a parallel pair of morphisms to its
domain.

Proposition 7. Let C be a category and 1 an object in C. The following are equivalent:

(a) 1 is subterminal in C;

(b) (id1, id1) is a terminal object in Par(C/1);

(c) (id1, id1) is a weak terminal object in Par(C/1).

Proposition 7 allows us to reduce the study of obstructions to subterminality of an object 1 in C to the
study of obstructions to weak terminality of (id1, id1) in Par(C/1).

Definition 9 (First homotopy poset). Let C be a category and x an object in C. The first homotopy poset
of C over x is the pointed poset

(π1(C/x), [x]) :=
(

π0(Par(C/x)/(idx, idx)), [(idx, idx)]
)
.

Putting together the description of the zeroth homotopy poset, the definition of Par(C/x) in Definition 8,
and Proposition 7, we see that an element of π1(C/x) is either [x], or ∥( f ,g)∥ for some parallel pair of
morphisms f ,g : y→ x in C with f ̸= g. The order relation is defined as follows:

• [x]≤ [x] trivially;

• [x]≤ ∥( f ,g : y→ x)∥ if and only if there exists a morphism h : z→ y in C equalising ( f ,g), that is,
satisfying h # f = h #g;

• it is never the case that ∥( f ,g)∥ ≤ [x];

• ∥( f ,g : y→ x)∥ ≤ ∥( f ′,g′ : y′ → x)∥ if and only if there exists a morphism h : y→ y′ such that
f = h # f ′ and g = h #g′ in C.

Proposition 8. Let C be a category and x an object in C. The following are equivalent:

(a) π1(C/x) = {[x]};

(b) x is subterminal in C.
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Corollary 1. Let C be a category and x an object in C. The following are equivalent:
(a) π0(C/x) = {[x]} and π1(C/x) = {[x]},
(b) x is a terminal object in C.

Remark 1. Recall that the (underlying set of the) fundamental group of a pointed topological space (X ,x)
is defined by

π1(X ,x) := π0(Ω(X ,x),cx)

where Ω(X ,x) is the space of loops in X based at x, and cx is the constant path at x. For a pointed
groupoid, which may be seen as the fundamental groupoid of a pointed space, this reduces to the set of
automorphisms of the object x, pointed with the identity automorphism.

The definition of π1(C/x) is made in analogy with this, letting the category of parallel arrows over
x replace the space of loops based at x, and a pair of identity morphisms replace the constant path.
The following result proves that, just like the zeroth homotopy poset, the first homotopy poset is a
generalisation of its groupoidal analogue.

Proposition 9 (π1(G/x) for a groupoid). Let G be a groupoid and x an object in G. Then:
1. π1(G/x) is a “set”, that is, a discrete poset, and

2. as a pointed set, it is isomorphic to the underlying pointed set of the group π1(G,x) = HomG(x,x).

Remark 2. We mention here that the field of directed algebraic topology [11, 7] has also produced
“non-invertible” versions of π1, namely, the fundamental category and monoids, that apply to directed
spaces. If applied to a category, these pick out “tautologically” the category itself and its monoids of
endomorphisms. To our knowledge, there is no strong relation to our line of research.

To conclude this section, we show in what way, precisely, the homotopy posets are functorial in the pair
(C,x) of a category and an object.

Proposition 10 (Functoriality of the homotopy posets). Let C be a category, i ∈ {0,1}. Then:
1. the assignment x 7→ πi(C/x) extends to a functor πi(C/−) : C→ Pos•;
2. a functor F : C→ D induces a natural transformation πi(F) : πi(C/−)⇒ πi(D/F−).

Given another functor G : D→ E, this assignment satisfies

πi(F #G) = πi(F) #πi(G), πi(idC) = idπi(C/−).

A concise way of packaging this information is to say that πi defines a functor from Cat to the lax slice
Cat 1Pos•, where Cat is the “huge” category of possibly large categories. The objects of the lax slice are
pairs of a possibly large category C and a functor C→ Pos•, and the morphisms are triangles of functors
commuting up to a natural transformation. Indeed, given F : C→ D, we have a triangle

C Pos•

D

F
πi(D/−)

πi(C/−)

πi(F)

commuting up to the natural transformation πi(F).

Remark 3 (Dual invariants). As usual, all the constructions can be dualised to Cop. This will replace the
slice over an object and its domain opfibration with the slice under an object and its codomain fibration,
producing invariants classifying obstructions to initiality of the object.
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2 Obstructions to a morphism being iso

As remarked in the Introduction, one of our main motivations for introducing homotopy posets was
measuring how far a generic morphism is from being iso. Just as we could separate obstructions to
terminality into obstructions to weak terminality and subterminality, we can separate obstructions to a
morphism being iso into obstructions to a morphism being split epi and mono, respectively.

Proposition 11. Let f : X → Y be a morphism in a category C. Then:
• f is split epi in C if and only if f is weak terminal in C/Y ,

• f is mono in C if and only if f is subterminal in C/Y .

Corollary 2. Let f : X → Y be a morphism in a category C. Then:
• f is split epi if and only if π0((C/Y )/ f ) is trivial;

• f is mono if and only if π1((C/Y )/ f ) is trivial, and:

• f is iso if and only if both π0((C/Y )/ f ) and π1((C/Y )/ f ) are trivial.

Furthermore, when the homotopy posets associated to a morphism f are not trivial, they give us precise
information about why f fails to be split epi and mono.

To make this more concrete, let us spell out precisely how to compute the invariants associated to a
function between sets, where split epi (assuming choice) means surjective and mono means injective. This
amounts to calculating π0((Set/Y )/ f ) and π1((Set/Y )/ f ) for some function f : X → Y .

Proposition 12. Let f : X → Y be a function between sets. ∥Set/Y∥ is isomorphic, as a poset, to the
power set PY , via the assignment (S⊆ Y ) 7→ ∥ıS∥, where ıS is the injective function including S into Y .
Through this bijection, ∥ f∥ corresponds to the image f (X) of f .

Using this correspondence and quotienting by the lower set of f (X), which contains in particular ∅, we
may identify π0((Set/Y )/ f ) with the subposet of PY whose elements are either ∅ or subsets of Y that
contain at least one element y /∈ f (X). The “minimal obstructions”, that is, the minimal elements in the
complement of the basepoint, are the singletons {y} with y ∈ Y \ f (X). This poset is trivial if and only if
f (X) = Y , that is, iff f is surjective.

Example 1. Let f : {0,1}→ {0,1,2,3} be the function mapping 0 7→ 0 and 1 7→ 1. The homotopy poset
π0((Set/{0,1,2,3})/ f ) has the following structure:

{0,1,2,3}

{0,1,2} {0,2,3} {1,2,3} {0,1,3}

{0,2} {1,2} {2,3} {0,3} {1,3}

{2} {3}

∅

The minimal obstructions {2} and {3} are in bijection with the elements not in the image of f .
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Proposition 13. Let X× f X be the pullback of f along itself — that is, the set {(x0,x1) | f (x0) = f (x1)}
— and let p f : X× f X → Y be the function (x0,x1) 7→ f (x0) = f (x1). Then:

1. ∥Par((Set/Y )/ f )∥ is isomorphic to P(X× f X) via the assignment (S⊆ X× f X) 7→ ∥(p0|S, p1|S)∥,
where pi|S are the projections X × f X → Y , restricted to S, seen as morphisms p f |S → f in
∥Par((Set/Y )/ f )∥;

2. through this bijection, ∥(id f , id f )∥ is identified with the diagonal ∆X.

Using this correspondence, we may identify π1(Set/X) with the subposet of P(X× f X) whose
elements are either ∅, or contain at least one pair (x0,x1) such that x0 ̸= x1. This poset is trivial if and
only if f is injective. Notice that the minimal obstructions to injectiveness of f are in bijection with pairs
(x0,x1) where x0 ̸= x1 but f (x0) = f (x1).

Example 2. Let f : {0,1}→ {∗} be the function mapping 0 7→ ∗, 1 7→ ∗. Then {0,1}× f {0,1} is the set
{(0,0),(0,1),(1,0),(1,1)}, and π1((Set/{∗})/ f ) has the following structure:

{(0,0),(0,1),(1,0),(1,1)}

{(0,0),(0,1),(1,1)} {(0,1),(1,0),(1,1)} {(0,0),(0,1),(1,0)} {(0,0),(1,0),(1,1)}

{(1,1),(0,1)} {(0,0),(0,1)} {(0,1),(1,0)} {(1,1),(1,0)} {(0,0),(1,0)}

{(0,1)} {(1,0)}

∅

Notice that, via the isomorphism Set≃ Set/{∗}, this is isomorphic to π1(Set/{0,1}).

To conclude, suppose that two morphisms are both components of the same natural transformation.
Is there a relation between the associated invariants? The following result answers this question in the
affirmative.

Proposition 14 (Covariance over the domain of a natural transformation). Let F,G : C→ D be two
functors and let α : F⇒ G be a natural transformation. For all i ∈ {0,1}, the assignment

x 7→ πi((D/Gx)/αx)

extends to a functor C→ Pos•.

Notice that this is not simply a consequence of Proposition 10, that is, it does not arise from the
general functoriality result by pre-composition with another functor.5 It implies that we can naturally map
obstructions for αx to obstructions for αy along a morphism f : x→ y in C; we can think of morphisms in
C as inducing a “flow” of obstructions to the components of α , under which a non-trivial obstruction may
be trivialised, but it can never be the case that a non-obstruction is “un-trivialised”.

5There is a unifying perspective on the two functoriality results, involving the theory of fibrations and cofibrations of
categories; this will be discussed in an extended technical paper.
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3 Qualifying compositionality

Now let P : C→ D be a lax functor of bicategories. This means that, for all triples of objects X ,Y,Z in C,
we have two functors

(P−) # (P−), P(− #−) : HomC(X ,Y )×HomC(Y,Z)→ HomD(X ,Z)

connected by a natural transformation, the laxator ϕ : (P−) # (P−)⇒ P(− #−).6 As a special case, when
C and D are monoidal categories seen as one-object bicategories, P is a lax monoidal functor, and the
laxator is a natural transformation (P−)⊗ (P−)⇒ P(−⊗−).

By Proposition 14, we obtain functors HomC(X ,Y )×HomC(Y,Z)→ Pos• sending a pair of morphisms
( f : X → Y,g : Y → Z) to the homotopy posets

πi((HomD(X ,Z)/P( f #g))/ϕ f ,g)

associated to the component ϕ f ,g of the laxator.
In the scenario sketched in the Introduction, the failure of ϕ f ,g to be iso is a failure of the “semantic”

functor P to be “fully compositional” with respect to the composition f #g. Thus the elements of these
homotopy posets may be seen as local obstructions to compositionality of P. Most interestingly, these
obstructions are covariant with respect to the 2-morphisms of C; thus we can think of “modifying f and g”
by acting on them with a 2-morphism, and see how that affects the obstructions.

3.1 Open Graphs

We apply our framework to a couple of tangible examples. Open graphs, defined in [8], can be thought of
as graphs with interfaces. Formally, open graphs are (isomorphism classes of) decorated cospans with
decorations in the category Graph of graphs and homomorphisms. Intuitively, they are depicted as in the
examples below, with input vertices on the left and output vertices on the right:

1 1

2

3 1

1

2

3

1

1

Indeed, there is a bicategory OpenGraph that has sets as objects, open graphs as morphisms, and
interface-preserving graph homomorphisms as 2-morphisms. For instance, the first and second open
graphs above correspond to morphisms G : {1} → {1,2,3} and H : {1,2,3} → {1}. These morphisms
can be composed, resulting in the morphism G #H : {1}→ {1} corresponding to the third open graph in
the picture above.

Every graph can be mapped to its reachability relation: this is a relation on the vertexes of the graph,
where two vertexes are considered related iff there is a path between them. Reachability can be recast as
a lax functor OpenGraph→ Rel to the bicategory of sets, relations, and inclusions of relations, which
maps an open graph G : X → Y to the relation RG : X → Y defined by

RG(x,y) if and only if there is a path between the input vertex x and the output vertex y.

6Technically, the laxators are a family of natural transformations indexed by X ,Y,Z, but we will leave the indexing implicit.
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Because Rel is locally posetal, to define R on 2-morphisms it suffices to verify that, if f : G→ G′ is a
graph homomorphism, then RG⊆ RG′. The laxators are also uniquely defined.

We can see that this functor is not strong. In the example above we have that RG ⊆ {1}×{1,2,3}
only contains the pair (1,1), since there are no paths from 1 to 2 and from 1 to 3 in G. Similarly,
RH ⊆ {1,2,3}×{1} only contains the pair (3,1). It follows that RG #RH : {1} → {1} is the empty
relation, but R(G #H) : {1}→ {1} is total, so RG #RH ⊊ R(G #H).

The result is that, if we want to compute the reachability relation of G #H by looking at the reachability
relations of G and H separately, we are going to miss something. This “compositionality gap” is tracked
by the π0 associated to the laxator components ϕG,H : RG #RH ⊆ R(G #H) (because these are all injective,
the π1 will always be trivial).

In our example, π0((HomRel({1},{1})/R(G #H))/ϕG,H) is isomorphic to the poset (∅ < {(1,1)})
pointed with ∅, so there is exactly one non-trivial obstruction. Using covariance, we can think of
“removing the obstruction” by modifying one or both of the parts G or H with a 2-morphism, that is, with a
graph homomorphism. For example, we can act on G with the homomorphism which identifies the output
vertices 1 and 3. The resulting graph G′ has RG′ = {(1,1),(1,3)}, so RG′ #RH = R(G′ #H) = {(1,1)};
correspondingly, we obtain a map of pointed posets from the π0 associated to ϕG,H to the π0 associated to
ϕG′,H , which “trivialises all obstructions”.

3.2 Schrödinger Compositionality

The name Schrödinger compositionality was introduced in [5] to refer to the form of compositionality that
exists in quantum mechanics, where non-separable processes are present, to disambiguate it from others.
One key implication of Schrödinger compositionality is that “a state can be more than its parts”. This is
arguably what makes composition interesting in quantum mechanics: it makes entanglement possible,
which Schrödinger described as the characteristic trait of quantum mechanics [13]. In contrast with
the example of open graphs, where the “compositionality gap” represents an obstacle to a computation
strategy, here it can be seen as a positive feature. Our approach can be used in both contexts; we will
focus on the case study of non-separable states, recasting it as the failure of a lax functor to be strong.

In the context of monoidal categories, a state is a morphism I → A, where I is the monoidal unit.
We say that a state ψ : I→ A⊗B is separable if there exist states ψA : I→ A and ψB : I→ B such that
ψ = ψA⊗ψB, or, graphically:

ψ = ψA ψB

Definition 10. Let (C,⊗, I) be a monoidal category. The state functor of C is the representable functor
HomC(I,−) : C→ Set.

Proposition 15 (Laxity of the state functor). The state functor lifts to a lax monoidal functor from (C,⊗, I)
to (Set,×,{∗}).

Recall that a monoidal category is semicartesian if its monoidal unit is terminal. The following result is
a consequence of the general fact that a functor from a semicartesian to a cartesian monoidal category has
a canonical oplax monoidal structure.

Proposition 16 (Oplaxity of the state functor). Let (C,⊗,1) be a semicartesian category. Then the state
functor lifts to an oplax monoidal functor from (C,⊗,1) to (Set,×,{∗}).
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Clearly, there are cases where the state functor is not just lax or oplax, but strong. The following result
captures the well-known fact that in a cartesian monoidal category every state is separable.

Proposition 17 (Strongness of the state functor). If (C,×,1) is cartesian, then the state functor is strong
monoidal.

Having turned Schrödinger compositionality into a question about (op)laxity of a functor, we can put
our framework to good work. Let A,B be objects in a monoidal category (C,⊗, I). The laxator component
ϕA,B is defined by

ϕA,B : HomC(I,A)×HomC(I,B)→ HomC(I,A⊗B)

(ψA,ψB) 7→ ψA⊗ψB.

By Proposition 14, we have functors C×C→ Pos• sending (A,B) to the homotopy posets

πi((Set/HomC(I,A⊗B))/ϕA,B), i ∈ {0,1}. (2)

Using the description of homotopy posets for slices of Set from Section 2, we see that
• minimal obstructions in the π0 are in bijection with non-separable states of A⊗B,

• minimal obstructions in the π1 are in bijection with pairs of pairs of states ((ψA,ψB),(χA,χB)) such
that ψA⊗ψB = χA⊗χB.

For example, in (VectC,⊗,C), the monoidal category of complex vector spaces with their tensor product,
whenever A and B are at least 2-dimensional, we have instances of both:

• the state 1 7→
(

1
0

)
⊗
(

1
0

)
+

(
0
1

)
⊗
(

0
1

)
of C2⊗C2 is non-separable,

• given any pair of states (ψA,ψB) and any non-zero λ ∈ C, the pair (χA,χB) := (λψA,λ
−1ψB)

satisfies ψA⊗ψB = χA⊗χB.
We can derive a few simple, immediate consequences from the covariance of (2) in the pair (A,B).

1. Given morphisms f : A→ A′, g : B→ B′, the induced maps of posets preserve the basepoint, that is,
map “non-obstructions” to “non-obstructions”. In this case, this implies that it is not possible to
entangle a separable state by local actions, that is, by applying morphisms on A and B separately.

2. On the other hand, it is, in principle, possible for the induced maps to send non-trivial obstructions
to the basepoint. For example, in complex vector spaces, acting on A or B with a rank-1 linear map
always has a separating effect.

Conclusion

We have introduced our new invariants of categories and stated their fundamental properties, before
sketching, through a couple of simple examples, how they may be used to obtain a more fine-grained
analysis of “failures of compositionality”. In an extended technical paper, we will study their formal
aspects more in depth, including criteria for the existence of joins and meets, induced monoidal structures,
and finer aspects of functoriality.

Most importantly, we hope to have opened a new avenue in “formal compositionality theory”. The
greatest challenge will be to graduate from proof-of-concept examples to ones that reveal more interesting
structure, perhaps in non-Set-like categories where a split epi or mono is not simply a surjective or
injective map. We have been looking at case studies of this sort, which nevertheless have manageable
combinatorics permitting an exhaustive study of their homotopy posets, and we hope to discuss them in
future work.
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[3] J. Adámek and J. Rosicky. Locally presentable and accessible categories. Vol. 189. Cambridge
University Press, 1994 (cit. on p. 14).

[4] J. C. Baez, F. Genovese, J. Master, and M. Shulman. “Categories of nets”. In: 2021 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2021, pp. 1–13 (cit. on p. 2).

[5] B. Coecke. “Compositionality as we see it, everywhere around us”. In: (2021). arXiv: 2110.05327
(cit. on pp. 1, 11).

[6] B. Coecke. “The mathematics of text structure”. In: Joachim Lambek: The Interplay of Mathematics,
Logic, and Linguistics (2021), pp. 181–217 (cit. on p. 2).

[7] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Directed algebraic topology
and concurrency. Vol. 138. Springer, 2016 (cit. on p. 7).

[8] B. Fong. “Decorated Cospans”. In: Theory and Applications of Categories 30.33 (2015), pp. 1096–
1120. arXiv: 1502.00872 (cit. on p. 10).

[9] B. Fong and D. I. Spivak. An invitation to applied category theory: seven sketches in composition-
ality. Cambridge; New York, NY: Cambridge University Press, 2019 (cit. on p. 2).

[10] N. Ghani, J. Hedges, V. Winschel, and P. Zahn. “Compositional game theory”. In: Proceedings of
the 33rd annual ACM/IEEE symposium on logic in computer science. 2018, pp. 472–481 (cit. on
pp. 1, 2).

[11] M. Grandis. Directed algebraic topology: models of non-reversible worlds. Vol. 13. Cambridge
University Press, 2009 (cit. on p. 7).

[12] A. Joyal. “The theory of quasi-categories and its applications”. In: Quaderns 45.2 (2008), pp. 151–
496 (cit. on p. 29).

[13] E. Schrödinger. “Discussion of Probability Relations between Separated Systems”. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 31.4 (1935), pp. 555–563. DOI:
10.1017/S0305004100013554 (cit. on p. 11).

[14] The Oxford Handbook of Compositionality. Oxford Handbooks in Linguistics. Oxford; New York,
NY: Oxford University Press, 2012 (cit. on p. 1).

https://arxiv.org/abs/2110.05327
https://arxiv.org/abs/1502.00872
https://doi.org/10.1017/S0305004100013554

