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In this talk, we will propose a remarkably simple formalization of topological quantum gates in homotopy type theory as
transport in a certain type family, following our paper [MSS23] of the same title. To understand how our formalization can
be so simple — derivable from bare foundations in a matter of forty pages, a feat inconceivable in set theoretic foundations
— we must first understand what a topological quantum gate is expected to be, and how a realistic class of such gates is
describable in synthetic homotopy theory.

A quantum system is usually represented by its Hilbert space H of states, but these systems may also depend on certain
classical environmental parameters such as the experimental setup or conditions of materials in use during an experiment.
Therefore, rather than being represented by a single Hilbert space, a quantum system in practice is represented by a bundle
H ! P of Hilbert spaces Hp over a classical parameter space P. Furthermore, we expect that continuous changes in the
parameter p will induce changes in the state of the system; that is, we equip the bundle H ! P with a connection so that
parallel transport along a path p12 : p1⇝ p2 yields a function Hp1 ! Hp2 . We can therefore drive our quantum systems by
giving continuous changes in the classical parameters.

Quantum systems are very susceptible to noise from their environment, getting more susceptible to decoherence as the
systems get larger. This provides an obstacle to developing quantum computers with many qbits, which has lead researchers
to search for quantum systems which are topologically insulated from their environment. Roughly speaking, a quantum
system H ! P is topologically insulated from its environment if the connection on this bundle is flat — that is, if the parallel
transport of states over continuous changes of environment variables is homotopy invariant. A topologically insulated system
will therefore be insulated from noisy perturbations to paths in environment variables which are sufficiently small as to be
homotopic to the intended path.

A reversible logic gate is an automorphism of {0,1}n — a reversible transformation of the state of n bits. By analogy,
a quantum gate is a unitary function of the state of n qbits, that is, a unitary automorphism of C2n. If a quantum gate is
implemented by parallel transport in a topologically insulated system, we say that it is a topological quantum gate.

Topological quantum gates are expected to be implemented by “braiding anyonic defects” of the (topologically ordered)
ground states of an essentially 2-dimensional topological quantum material. The potential for this is neatly captured by
one of the classical theorems of mathematical quantum mechanics: the Quantum Adiabatic Theorem, which says that in
the asymptotic limit of sufficiently gentle (i.e. “adiabatic”) changes in external classical parameters, the induced evolution
of the system asymptotically preserves gapped energy eigen-states, and so in particular preserves gapped ground states.
Such adiabatic changes therefore act on the Hilbert spaces H p1 of gapped ground states by unitary operators Up12 that vary
continuously with the adiabatic parameter path p12 : p1⇝ p2.

Figure T. Schematically shown on the
left is the “adiabatic” transport of quan-
tum states along linear maps depending
on continuous paths in a classical pa-
rameter space.
The diagram on the right indicates our
description of such situations by (lin-
ear) homotopy type families depending
on a base homotopy type, where we in-
terpret the variation of states over paths
as an instance of the transport rule of
homotopy type theory.
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These topological quantum materials are expected to be essentially 2-dimensional lattices with point “anyonic” defects.
For this reason, the classical parameter space P of such a system is expected to be the configuration space BPBr(N) of N
points on a plane. The Hilbert spaces Hp depending on the position p ∈ BPBr(N) of the anyonic defects are thought to be
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the spaces of states of a Chern-Simons field theory, or rather their “chiral half”, called the spaces of “conformal blocks” (see
[FMS97, §C]). A derivation of this (previously unproven, cf. [Va21]) assumption from first principles is argued in [SS22-Ord,
§3].

This bundle of conformal blocks carries a canonical flat connection known as the Knizhnik-Zamolodchikov connection,
[FMS97, §15.3.2][Ko02, §1.5, 2.1][Ab15, §4], which is meant to give the (topologically insulated) evolution of the system.
The parallel transport of this KZ-connection constitutes a unitary representation of the fundamental group of the configuration
space of points, and so a representation of the pure braid group. This is the sense in which a topological quantum gate may
be implemented by braiding anyonic defects.

Remarkably, the hypergeometric integral construction ([SS22-Def, Prop. 2.15, 2.17]) in conformal field theory provides
an equivalence between

(1) the bundle of conformal blocks with its KZ-connection
(2) the bundle of suitably twisted cohomology groups of configuration spaces of N +• points

equipped with their (flat) Gauss-Manin connection.
The Gauss-Manin connection is a flat connection definable on the twisted cohomology groups of a bundle using purely

homotopical methods. It is this remarkable equivalence which allows us to identify these bundles of conformal blocks (rep-
resenting topological quantum systems) with constructions in abstract homotopy theory that may be formalized in homotopy
type theory.

We will understand parallel transport in the Gauss-Manin connection as transport in a type family of twisted cohomology
groups. We will then construct the configuration spaces BPBr(N) in homotopy type theory using a novel construction, and
define the appropriate twisted family of cohomology groups. Thanks to the hypergeometric integral construction, this will
equivalently provide a formalization of the KZ-connection on conformal blocks, which we conclude as our main Theorem.
The formalization in Cubical Agda of this approach is ongoing as part of an undergraduate research program at CQTS.

Definition 1 (Gauss-Manin transport on fibrations of twisted cohomology groups). We say that the data type of fibrations of
twisted ordinary cohomology sets is:

coefficients

R : Ring,
degree
n : N,

parameter base

B : Type,

X(−) : B ! Type
fibration of domains

, τ(−) : (b : B)!
(
Xb ! BR×)

family of twists

 ⊢

twisted cohomology

Hn+τ(−)
(
X(−); R

)
:≡[

(t : BR×)!
(

fibt
(
τ(−)

)︸ ︷︷ ︸
fib(−, t)(prX ,τ)

! Bn( ↷ t Rudl)
)]

0
:

fibered
over base
B ! Type

(1)

Given such, its Gauss-Manin parallel transport is the corresponding transport over the base type B:

GMTransport : ∏
b1,b2:B

(
IdB(b1, b2)

(
Hn+τb1

(
Xb1 ; R

) ∼
! Hn+τb2

(
Xb2 ; R

)))
.(

b1
p12⇝ b2

)
7−! (p12)∗

(2)

Definition 2 (Homotopy data structure of conformal blocks). In specialization of Def. 1, we obtain this data type:
punctures

N : N+,

degree

n : N,
shifted level

κ : N≥2

w(−)

weights

: N ! {0, · · · ,κ −2}

 ⊢

(⃗
z 7!

[
(t : BC×)!

(
fib(t ,⃗z)

(
prN+n

N , τ(κ,w•)
)
! Bn( ↷ t Cudl)

)]
0

)
: BPBr(N)! Type

where

prN+n
N : BPBr(N +n) BPBr(N)
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bI i exp(2πi wI
κ
)

bi j exp(2πi 2
κ
)

bI J exp(2πi wI wJ
2κ

)

(3)

Theorem 3 (Topological quantum gates as homotopy data structure). The semantics in the classical model topos of
the transport operation (2) in this data type (3) is given by the monodromy of the Knizhnik-Zamolodchikov connection, on
ŝu2κ −2-conformal blocks (on the Riemann sphere with N +1 punctures weighted by (wI)

N
I=1 and wN+1 = n+∑I wI).
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