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A striking phenomenon in physics, known as Bell’s nonlocality and its generalization called
contextuality, can be expressed as the nonexistence of a joint probability distribution over the set
of all measurements that marginalizes to the distributions of the restricted set of measurements
obtained from the experiment. Such a joint distribution always exists in classical theories. In
particular, a joint distribution provides a model where all measurement outcomes are assigned
before the measurement takes place, and the measurement probabilities are obtained by considering
all such global assignments with a certain probability. It is a celebrated result of Bell [1] that in
quantum theory, the joint distribution does not always exist, i.e., there are contextual families of
distributions.

There are various approaches to formalizing contextuality. The presheaf approach is introduced
in [2]. The ingredients in this approach are (1) a simplicial complex Σ whose vertices represent
the set of all measurements, and its simplices are those that can be jointly performed, and (2) a
finite set of outcomes for the measurements. For the outcome set, we don’t lose any generality by
considering the ring Zd of integers modulo d. A distribution on (Σ,Zd) is a presheaf of distributions,
i.e., a family (pσ)σ∈Σ together with a compatibility condition. Each pσ is a distribution on the set
of all functions σ → Zd. More formally, let DR denote the distribution monad on the category
of sets [3], where R is a commutative semiring. Then pσ belongs to DR(Zσd) where R = R≥0, the
semiring of nonnegative reals. Another approach to contextuality is the topological approach of [4]
based on techniques from the cohomology of groups. This approach introduces cohomology classes
that can detect strong contextuality but fail to capture weaker versions, e.g., the famous Clauser–
Horne–Shimony–Holt (CHSH) scenario [5]. In [6] both approaches are unified under the theory
of simplicial distributions. This theory goes beyond the usual assumption that measurements and
outcomes are represented by finite sets. In this framework, one can study distributions on spaces
of measurements and outcomes, where a space is represented by a simplicial set. Simplicial sets are
combinatorial objects more expressive than simplicial complexes. They are fundamental objects
in modern homotopy theory [7]. A simplicial distribution is defined on a pair (X,Y ) of simplicial
sets, where X represents the measurements and Y the outcomes. The distribution monad can be
elevated to a monad on the category of simplicial sets. Given Y , one can define another simplicial
set DR(Y ) whose simplices are distributions on the set of simplices of Y . A simplicial distribution
is a morphism of simplicial sets p : X → DR(Y ).

In this paper, we study simplicial distributions from a categorical perspective. For a semiring
R the algebras of the distribution monad DR : Set → Set are called R-convex sets. This notion
generalizes the usual notion of convexity for R = R≥0. Let ConvR denote the category of R-
convex sets. Every monad has an associated Kleisli category. In the case of DR, the morphisms
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of the Kleisli category sSetDR
are the simplicial distributions, i.e., for simplicial sets X,Y the set

SetDR
(X,Y ) of morphisms is given by simplicial set morphisms X → DR(Y ). Let sConvR denote

the category of simplicial R-convex sets. The main examples of such simplicial objects are DR(Y )
for some simplicial set Y .

Proposition 0.1. The functor sending a pair (X,Y ) of simplicial sets to the set sSet(X,Y ) of
simplicial set morphisms restricts to a functor sSet(−,−) : sSetop × sConvR → ConvR.

The main application of this result is to the set of simplicial distributions. By this result the set
sSet(X,DR(Y )) is an R-convex set. Contextuality for simplicial distributions is defined using a
comparison map ΘX,Y : DR(sSet(X,Y )) → sSet(X,DR(Y )). Under this map, the delta distribu-
tion at a simplicial set morphism ϕ : X → Y is sent to the simplicial distribution given by the

composition X
ϕ−→ Y

δY−→ DR(Y ), called a deterministic distribution. Since the target is R-convex,
ΘX,Y is the unique extension to the free DR-algebra, the domain of the map. A simplicial distribu-
tion is called contextual if it lies in the image of ΘX,Y ; otherwise called noncontextual. This notion
generalizes the notion of contextuality originally introduced in [2] for presheaves of distributions.

A category-theoretic point of view suggests lifting our analysis from the level of morphism sets
to the level of categories. For this, we introduce the notion of convex categories. The first step
is to lift DR to a monad on the category Cat of (locally small) categories. Then we define an
R-convex category as a DR-algebra in Cat. Every category enriched over the category of R-convex
sets is an R-convex category. However, the converse does not always hold. The prominent example
of a convex category is the Kleisli category SetDR

, and its simplicial version sSetDR
, which are

not enriched over ConvR. We can think of ΘX,Y assembled into a morphism in ConvCatR from
the free R-convex category to the Kleisli category, both of which obtained from the category of
simplicial sets:

Θ : DR(sSet)→ sSetDR
.

For outcome spaces which also have a group structure the convex set of simplicial distributions can
be given a monoid structure. Our categorical framework combined with this monoid structure has
interesting applications connecting contextuality to a weak notion of invertibility in convex monoids.
Any presheaf of distributions can be realized as a simplicial distribution p : X → DR(NZd), where
NZd is the nerve of the additive group Zd. The simplicial set NZd is, in fact, a simplicial group. The
group structure on the nerve induces a monoid structure on the convex set sSet(X,DR(NZd)) of
simplicial distributions. We remark that this monoid structure is new and has not been investigated
in the study of contextuality. More precisely, sSet(X,DR(NZd)) is a convex monoid, i.e., a convex
category with a single object. For a convex monoid M , with the map πM : DR(M) → M giving
the DR-algebra structure, an element m ∈ M is called weakly invertible if it lies in the image of

the composite DR(M∗)
DR(iM )
↪−−−−−→ DR(M)

πM

−−→M , where iM : M∗ ↪→M is the inclusion of the units.
Our main result connects weak invertibility to noncontextuality.

Theorem 0.2. Let R be a zero-sum-free, integral (commutative) semiring. Given a simplicial set
X and a simplicial group Y , a distribution p ∈ sSet(X,DR(Y )) is noncontextual if and only if p
is weakly invertible.

Using our categorical approach, we also make the following contributions: (1) We introduce
the notion of strong invertibility, a monoid-theoretic analogue of strong contextuality. (2) We
introduce a degree of invertibility called invertible fraction which generalizes the notion of noncon-
textual fraction introduced in [2, 8]. (3) We show that simplicial homotopy can be used to detect
extremal contextual distributions, a question of fundamental importance in the study of polytopes
of distributions; see [9–12].
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