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Basic idea. Markov categories are a novel framework to describe and treat problems in probability
and information theory. One can combine the categorical formalism with the traditional quantitative
notions of entropy, mutual information, and data processing inequalities. Several quantitative aspects
of information theory can be captured by an enriched version of Markov categories, where the spaces
of morphisms are equipped with a divergence or even a metric.

For instance, Markov categories give a notion of determinism for sources and channels, and we
can define entropy exactly by measuring how far a source or channel is from being deterministic. This
recovers Shannon and Rényi entropies, as well as the Gini-Simpson index used in ecology to quantify
diversity, and it can be used to give a conceptual definition of generalized entropy.

Divergences on Markov categories. A divergence or statistical distance on a set X is a function

X ×X [0,∞]

(x, y) D(x ∥ y)

D

such that D(x ∥ x) = 0. In particular, every metric is a divergence.
We can define a category enriched in divergences analogously to metrically enriched categories:

Definition 1. A divergence on a monoidal category C amounts to:

– For each pair of objects X and Y , a divergence DX,Y on the set of morphisms X → Y , or more
briefly just D; such that

– The composition of morphisms in the following form

X Y Z

f

f ′

g

g′

satisfies the following inequality,

D(g ◦ f ∥ g′ ◦ f ′) ≤ D(f ∥ f ′) +D(g ∥ g′); (1)

– The tensor product of morphisms in the following form

X ⊗A Y ⊗B

f⊗h

f ′⊗h′

satisfies the following inequality,

D
(
(f ⊗ h) ∥ (f ′ ⊗ h′)

)
≤ D(f ∥ f ′) +D(h ∥ h′). (2)

We can interpret this definition as the fact that we can bound the distance between complex config-
urations in terms of their simpler components, an enriched version of the principle of compositionality.

Markov categories are particular monoidal categories, and as such, one can enrich them in diver-
gences according to Definition 1 (see [3, Section 2]). Here are two important examples of divergences
that we can put on the category FinStoch of finite alphabets and noisy channels.
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Example 1 (The Kullback-Leibler divergence). Let X and Y be finite sets, and let f, g : X → Y be
stochastic matrices. The relative entropy or Kullback-Leibler divergence between f and g is given by

DKL(f ∥ g) := max
x∈X

∑
y∈Y

f(y|x) log f(y|x)
g(y|x)

,

with the convention that 0 log(0/0) = 0 and p log(p/0) = ∞ for p ̸= 0.

Example 2 (The total variation distance). Let X and Y be finite sets, and let f, g : X → Y be
stochastic matrices. The total variation distance between f and g is given by

DT (f ∥ g) := max
x∈X

1

2

∑
y∈Y

∣∣f(y|x)− g(y|x)
∣∣.

Recovering information-theoretic quantities. Recall that a source p on X in a Markov category
is called deterministic [1, Definition 10.1] if and only if copying its output has the same effect as
running it twice independently:

=

X

X

X

X
p

p

p

(3)

It is then natural to define as our measure of randomness the discrepancy between the two sides of
equation (3).

Definition 2. Let C be a Markov category with divergence D. The entropy of a source p is the quantity

H(p) := D
(
copy ◦ p ∥ (p⊗ p)

)
, (4)

i.e. the divergence between the two sides of (3). (Note that the order matters.)

If we equip FinStoch, with the KL divergence, our notion of entropy recovers exactly Shannon’s
entropy:

HKL(p) = −
∑
x∈X

p(x) log p(x).

If we instead use the total variation distance, our notion of entropy gives the Gini-Simpson index [2],
used for example in ecology to quantify diversity:

HT = 1−
∑
x∈X

p(x)2.

This approach to information theory recovers other quantities as well, but it also poses a number
of open problems. We refer the interested reader to [3].
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